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Abstract 

This report presents an overview of the software developed under the 
common high performance computing software support initiative (CHSSI), 
computational fluid dynamics (CFD)-6 project. Under the project, a zonal 
Navier-Stokes flow solver tested and validated via years of productive 
research at the U.S. Army Research Laboratory was rewritten for scalable 
parallel performance on both shared memory and distributed memory high 
performance computers. At the same time, a graphical user interface 
(GUI) was developed to help the user set up the problem, provide real- 
time visualization, and execute the solver. The GUI is not just an input 
interface but provides an environment for the systematic, coherent 
execution of the solver, thus making it a more useful, quicker and easier 
application tool for engineers. Also part of the CHSSI project is a 
demonstration of the developed software on complex applications of 
interest to the Department of Defense (DoD). Results from computations 
of 10 brilliant antitank (BAT) submunitions simultaneously ejecting from a 
single Army tactical missile and a guided multiple launch rocket system 
missile are discussed. Experimental data were available for comparison 
with the BAT computations. The CFD computations and the 
experimental data show good agreement and serve as validation for the 
accuracy of the solver. The software has been written with large memory 
requirements and scalability in mind. For a grid size of 59 million points, 
the performance achieved on an Silicon Graphics, Incorporated, Origin 
2000 with 96 processors is 18 times the performance that could be 
achieved via a computer with the processing speed of a single Cray C-90 
processor. 
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EXECUTIVE SUMMARY 

Under the auspices of the common high performance computing software support initiative 
(CHSSI) computational fluid dynamics (CFD)-6, a suite of codes, now called the zonal Navier- 
Stokes flow (ZNSFLOW) solver, was developed to enable the calculation of aerodynamic 
problems of Army interest. The suite includes a zonal Navier-Stokes solver and a graphical user 
interface (GUI) environment for problem setup, interactive visualization, and solver execution. 
The objectives of the effort were to 

1. Develop a scalable version of ZNSFLOW; 

2. Add features that would enhance applicability and ease of use; 

3. Demonstrate the design utility of the software by solving current Department of Defense 
(DoD) priority viscous flow problems. 

Based on a solver known as F3D (a fully vectorized FORTRAN1 77 code), the code was 
rewritten to provide scalable performance on a variety of architectures. Enhancements included 
dynamic memory allocation and optimized cache management. Emphasis was placed on user 
friendliness and ease of use. The distributed interactive computing environment GUI was written 
to allow some of ZNSFLOW s complex features to be easily employed and to incorporate menu- 
based help. For example, the solver allows for one-on-one overlaps between grid zones in any 
direction. The GUI makes the setup for this generalized data exchange intuitive and provides 
simple error-checking capabilities. Boundary conditions are generalized and can be applied to 
any surface or line. In addition, the solver can perform computations with a Chimera composite 
grid discretization technique. The difficulty of using turbulence models with the Chimera 
technique was overcome by the implementation of a point-wise turbulence model. 

ZNSFLOW was designed to operate in both a shared and a distributed memory computer 
environment. The shared memory version of the solver relies on loop-level parallelism with 
optimized cache management. The distributed memory version uses the shared memory 
(SHMEM) library for the Cray T3E and Origin 2000 computers and the message-passing 
interface (MPI) library for the IBM scalable parallel (SP) computers. 

The code has been successful in calculating flow fields, starting with a simple flat plate, 
flows around missiles at large angles of attack, guided multiple launch rocket system, and the flow 
field around ten brilliant antitank sub-munitions ejected from an Army tactical missile. Typically, 
for a grid size of 59 million elements, the performance achieved on a Silicon Graphics, Incorporated, 
Origin 2000 with 96 processors is 18 times that on a single Cray C-90 processor. Experimental 
verification of the flow predictions gives confidence in the capability of the code. 

Formula Translator 
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COMMON HIGH PERFORMANCE COMPUTING SOFTWARE SUPPORT INITIATIVE 
(CHSSI) COMPUTATIONAL FLUID DYNAMICS (CFD)-6 PROJECT FINAL REPORT: 

ARL BLOCK-STRUCTURED GRIDDTNG ZONAL NAVJER-STOKES 
FLOW (ZNSFLOW) SOLVER SOFTWARE 

1. INTRODUCTION 

The thrust of the work described here is to further develop an existing computational fluid 
dynamics (CFD) code and make it more accessible for engineers. The code was developed as part 
of the common high performance computing software support initiative (CHSSI) and is now called 
the zonal Navier-Stokes flow (ZNSFLOW) solver. ZNSFLOW is actually a suite of codes that 
basically includes a zonal Navier-Stokes solver and graphical user interface (GUI) environment for 
problem setup, interactive visualization, and solver execution. The primary goals of the ZNSFLOW 
CHSSI project are to (a) develop a scalable version of a zonal Navier-Stokes solver, (b) add features 
to the ZNSFLOW software, which allow general applicability and ease of use, and (c) demonstrate 
the design utility of the scalable ZNSFLOW software by solving current Department of Defense 
(DoD) priority viscous flow problems. In keeping with these goals, this report gives a broad 
overview of the ZNSFLOW CHSSI project, the ZNSFLOW solver and its capabilities, as well as 
the GUI environment. Some results from test cases are presented to demonstrate recent applications 
of ZNSFLOW. 

2. THE ZNSFLOW SOLVER 

The ZNSFLOW solver was originally known as F3D, a fully vectorized (FORTRAN2) 77 
code used on Cray vector computers such as the C-90.[l,2] During the CHSSI program, it has 
been rewritten to provide scalable performance on a number of computer architectures. Other 
added enhancements include dynamic memory allocation and highly optimized cache management. 
Aside from the performance aspects, the solver has been provided with a number of enhancements 

to make it more user friendly and capable of performing flow field computations for complex 
configurations of interest to DoD. The solver was written to operate with and without a GUI 
environment. A large portion of the effort spent on the ZNSFLOW CHSSI project went toward 
increasing ease of use and general applicability of the ZNSFLOW solver. The distributed 
interactive computing environment (DICE) GUI allows some of the ZNSFLOW solver's more 
complex features to be easily employed. For example, the solver allows for one-to-one overlaps 
between grid zones in any direction. The GUI makes the setup for this generalized data exchange 
intuitive and provides some simple error-checking capabilities to catch mistakes in creating the 
input file. Many of the boundary conditions are generalized and can be called for any surface or 
line. In addition, the solver can perform computations with the Chimera composite grid 
discretization technique.[3-5] By using the Chimera technique, one can greatly simplify the grid 
topology and grid generation for very complex systems. One of the drawbacks in using the 
Chimera technique has been the increased complexity and corresponding confusion in applying a 
turbulence model. A Chimera model can be composed of multiple zones, with each zone 

2 Formula Translator 



possibly having a unique grid topology. Most turbulence models have specific directional, 
orientation, or distance-related requirements for correct application. For a complex Chimera 
model, applying a turbulence model can be a very complicated process. This problem has been 
addressed in ZNSFLOW by the installation of a point-wise turbulence model [6] that is not 
orientation specific. This greatly simplifies the setup of the turbulence model. Wall location 
information is supplied when the wall boundary conditions are set by the user through the GUI. 
A conventional Baldwin-Lomax turbulence model [7] is also available. 

2.1 Governing Equations and Solution Technique 

The complete set of time-dependent, Reynolds-averaged, thin layer, Navier-Stokes 
equations is solved numerically to obtain a solution to this problem. The numerical technique 
used is an implicit, finite difference scheme. Steady state calculations are made to numerically 
compute the flow field. 

2.1.1 Governing Equations 

The three-dimensional (3-D), time-dependent, generalized geometry, Reynolds-averaged, 
thin layer, Navier-Stokes equations for general spatial coordinates % r\, and C, can be written as 
follows [1]: 

drq + df F + ö„G + af H = Re-1Sc S, (1) 

in which 
\ = £(x, y, z, t) - longitudinal coordinate; 

r| = r|(x, y, z, t) - circumferential coordinate; 
C, = £(x, y, z, t) - nearly normal coordinate; and 
x = t - time 

In Equation (1), q contains the dependent variables (density, three velocity components, and 

energy), and F, G, and H are flux vectors. The thin layer approximation is used here, and the 
viscous terms involving velocity gradients in both the longitudinal and circumferential directions 
are neglected. The viscous terms are retained in the normal direction, £, and are collected into the 
vector S.  In the wake or the base region, similar viscous terms are also added in the stream-wise 
direction, £. For computation of turbulent flows, the turbulent contributions are supplied through 
an algebraic eddy viscosity turbulence model developed by Baldwin and Lomax [7] or a point-wise 
turbulence model [6]. A technical discussion of the turbulence models is given in Appendix A. 

2.1.2 Numerical Technique 

The implicit, approximately factored scheme for the thin layer, Navier-Stokes equations 
using central differencing in the r\ and C, directions and an upwind scheme in \ is written in the 
following [2]: 



[l + ibh$ (Ä+)n + ibh^cn-ibhRe'' S( J'1 M" J~ibDi lj 

x [l + ibh«?/ (Ä")n + ibh^,Bn-ibDi |JAQ 

(2) 

= -ibAt{^b[(F+)n-F:] + ^f[(F)n-F;] + ^(G-GJ 

+ ^(Hn-HJ-Re'^(s"-Sj}-ibDe(Q-Qj, 

in which h = At or (At)/2. The free-stream fluxes are subtracted from the governing equation to 
reduce the possibility of error from the free-stream solution corrupting the converged solution. 
Here, 6 is typically a three-point, second order, accurate central difference operator; 8 is a 
midpoint operator used with the viscous terms; and the operators 8% and 8\ are backward and 

forward three-point difference operators. The flux F has been eigensplit and the matrices 
A, B, C, and M result from local linearization of the fluxes about the previous time level. Here, 
J denotes the Jacobian of the coordinate transformation. Dissipation operators De and Di are used 
in the central space differencing directions. The smoothing terms used in the present study are of 
the form 

Del =(At) J"1 
n 

s28p(ß) ßS + £4ö-^s3 
l,J> 

and 

in which 

Dil, = (At) j"1 [e2Sp(B)ßS + 2.5S4öp(P) 8 ]\n J, 

ß = .     '?*'. 
l(l + £2) P 

and p(B) is the true spectral radius of B. The idea here is that the fourth difference will be 
adjusted downward near shocks (e.g., as ß gets large, the weight on the fourth difference drops 
while the second difference adjusts upward). 

2.2 Chimera Composite Grid Scheme 

The Chimera overset grid technique greatly adds to the number of applications to which 
the ZNSFLOW solver can be applied. Although the ZNSFLOW solver can be applied to 
computational meshes with Chimera topology, note that the software used to create such 
computational meshes is not included with the ZNSFLOW suite of software. The Chimera over- 
set grid technique, which is ideally suited to multi-body problems,[8-10] involves generating 
independent grids about each body and then over-setting them onto a base grid to form the 
complete model. This procedure reduces a complex multi-body problem into a number of 
simpler sub-problems. An advantage of the over-set grid technique is that it allows computational 
grids to be obtained for each body component separately and thus makes the grid generation 
process easier. Because each component grid is generated independently, portions of one grid may 



lie within a solid boundary contained within another grid. Such points lie outside the computational 
domain and are excluded from the solution process. Equation (2) has been modified for Chimera 
over-set grids by the introduction of the flag ib to achieve just that. This ib array accommodates the 
possibility of having arbitrary holes in the grid. The ib array is defined so that ib = 1 at normal grid 
points and ib = 0 at hole points. Thus, when ib = 1, Equation (2) becomes the standard scheme, but 

when ib = 0, the algorithm reduces to A$" = 0 or £n+1 =&n, leaving & unchanged at hole points. 
The set of grid points that forms the border between the hole points and the normal field points is 
called inter-grid boundary points. These points are revised by interpolating the solution from the 
overset grid that created the hole. Values of the ib array and the interpolation coefficients needed 
for this revision are provided by a separate algorithm.[3] 

Figure 1 shows an example in which the parent missile grid is a major grid, and the 
brilliant anti-armor (BAT) sub-munition grid is a minor grid. The sub-munition grid is completely 
overlapped by the missile grid, and thus, its outer boundary can obtain information by interpolation 
from the missile grid. Similar data transfer or communication is needed from the sub-munition 
grid to the missile grid. However, a natural outer boundary that overlaps the sub-munition grid 
does not exist for the missile grid. The over-set grid technique creates an artificial boundary or a 
hole boundary within the missile grid, which provides the required path for information transfer 
from the sub-munition grid to the missile grid. The resulting hole region is excluded from the 
flow field solution in the missile grid. 

Missile(Major) Domain Submunition(Hinor) Domain 

Artificial Boundary in Parent Domain 

Figure 1. Inter-grid Communications. 

2.3 Distributed and Shared Memory ZNSFLOW 

The ZNSFLOW software has been targeted to operate on both shared memory and distributed 
memory architectures. In order to fulfill the CHSSI program requirement that the ZNSFLOW 
solver be scalable on applicable computers, it was decided to create two versions of the ZNSFLOW 
solver, with one version optimized to operate on shared memory architectures and the other 
optimized to operate on distributed memory architectures. The shared memory version of the solver 
employs loop-level parallelism that has highly optimized cache management. The distributed 
memory version is not as fully developed as the shared memory version and is currently not able to 



perform computations using the Chimera scheme. Once the ZNSFLOW software is complete, the 
differences between the multiple versions of the solver should be transparent to the user. Both 
versions of the ZNSFLOW solver apply the same unsteady Reynolds-averaged thin layer Navier- 
Stokes equations, as described previously, to compute flow field solutions with no changes in the 
time-tested solution algorithm. However, the versions use different programming techniques to 
achieve scalable performance for their intended computer architectures. The immediately following 
sections (2.3.1 and 2.3.2) describe some of the technical aspects and performance of the distributed 
and shared memory versions of the ZNSFLOW solver. 

2.3.1 Shared Memory ZNSFLOW 

Many modern parallel computers are now based on high-performance reduced instruction 
set computing (RISC) processors. The shared memory version of ZNSFLOW is written to 
perform efficiently on these computers. The key breakthrough in determining a methodology for 
optimizing and parallelizing the ZNSFLOW solver was the realization that many of the new 
systems seem to lend themselves to the use of loop-level parallelism. This strategy offers the 
promise of allowing the solver to be parallelized with absolutely no changes in the algorithm. 
Note that it is difficult to efficiently use loop-level parallelism on anything but a shared memory 
architecture and only recently have vendors started shipping shared memory architectures that are 
based on RISC processors with aggregate peak speeds exceeding a few Gflops3. Parallel high 
performance computers (HPCs) often employ approximately 100 RISC processors. With the 
speed of RISC processors, it may not be necessary to use more than 100 processors to meet most 
users' needs. However, for this assumption to be true, a reasonable percentage of the peak 
processing speed of each processor must be used. Programming for the use of a limited number 
of powerful processors (e.g., 10 to 100 processors) has some advantages over programming for a 
computer that employs approximately 1,000 relatively weaker processors. Using significantly 
fewer processors can 

1. Allow the use of parallelization techniques that may support only a limited degree of 
parallelism; 

2. Decrease the extent to which the parallel efficiency of the algorithm is degraded; 

3. Decrease the percentage of the run time spent passing messages; and 

4. Decrease the effect of Amdahl's Law.[ll] 

Several methods were used to improve code performance for computers employing 
multiple RISC processors. The goal was to achieve both serial and parallel efficiency. To 
achieve high serial efficiency on a RISC processor, the programmer must be mindful of the cache 
miss rate and the translation "look-aside" buffer (TLB) miss rate. Some of the programming 
techniques used to accomplish this are also beneficial to the program's parallel performance. 
Some of the programming techniques used to optimize code performance are described next. 

' One billion floating point operations per second 



• Indices of arrays were reordered to improve spatial and temporal memory access locality. 
For example, if there is a long complex loop that employs values associated with a single data 
point, then it is more efficient to store those values in array Q(N,J,K,L) than in array Q(J,K,L,N) 
in which N is some small integer such as 5 or 6. 

• Multiple arrays used as a group were merged. For example, if the arrays XX(J,K,L), 
XY(J,K,L), and XZ(J,K,L) are needed for the same equation, they should be merged to form the 
single array XXYZ(3,J,K,L). 

• Loops in nested loops were reordered. For example, if one has a nested loop such as 

DO... M=l,5 
DO ... N=l,5 

" DO... L=1,LMAX 
DO... K=1,KMAX 
Several lines of code involving arrays such as A(K,L,N,M). 

It will probably produce far fewer cache and TLB misses if the loop nest can be rewritten as 

DO ... L=1,LMAX 
DO... K=1,KMAX 
DO...M=l,5 

DO ... N=l,5 
Several lines of code that now involve arrays such as A(N,M,K,L). 

This will have the added benefit of potentially supporting more aggressive forms of loop unrolling. 

• Matrix transposition operations for invariant/relatively invariant arrays were kept in 
memory between uses and were revised only when needed. 

• Loops were sized by data requirements to allow sets of operations to be performed so that 
the data used were "locked" into the cache memory. This technique is not very beneficial for small 
cache sizes. For good efficiency, an "off-chip" cache size of at least 1 megabyte (MB) is needed. 
Properly sizing the loops virtually eliminated cache misses associated with scratch arrays. 

Note that the sample computer code and variables are for the FORTRAN language in which 
most of the solver is written. If a different computer language, such as C is used, the array 
indices and loops may need to be ordered differently for peak efficiency. For a more formal 
discussion of how and why the above programming techniques are used to improve code 
performance, refer to Appendix B and Pressel.[12] 

A generic missile configuration was used for many of the tests of the parallelized code. In 
these tests, a 1,000,000-point grid (see Figure 2) was used to check the accuracy of the results. 
The computed results obtained with the parallelized code were compared with those obtained using 
the vectorized code on a Cray C-90. These computed results were compared with the experimental 
data obtained from the Defense Evaluation and Research Agency (DERA), United Kingdom, for 
the same configuration and test conditions.[13,14] For this case, the computation on the C-90 



used 18 mega-words (144 MB) of memory and approximately 7.5 hours of central processing unit 
(CPU) time. Once the accuracy of the computed results was verified, performance studies were 
conducted for grid sizes ranging from 1 to 59 million grid points. Figure 3 shows the 
circumferential surface pressure coefficient distribution of the missile at a selected longitudinal 
station. [14] Computed results from both vectorized (C-90) as well as the parallelized versions of 
the code are shown to lie on top of one another and are thus in excellent agreement. 

Results were obtained by using a highly efficient serial algorithm as the starting point and 
taking great care not to make any changes in the algorithm. Initial efforts to run the vector- 
optimized version of this code on one processor of a Silicon Graphics, Incorporated (SGI) Power 
Challenge (75-MHz R8000 processor) proved to be extremely disappointing. After aggressively 
tuning the code for a low-cache miss rate and good pipeline efficiency, the authors achieved a 
factor of 10 improvement in the serial performance of this code. At this point, the percentage of 
peak performance from the RISC-tuned code using one processor on the SGI Power Challenge 
was the same as the vector-tuned code on one processor of a Cray C-90. 

X/D =3.5 

cP 

-0.2 

• Experiment 
- C90 
OOrlBln2000 

_i—i—i—u 
0.0 30.0 60.0 90.0        120.0        150.0        180.0 

Phi(degrees) 

Figure 2. 1-Million-Point Key Technical Area (KTA)   Figure 3. Pressure Coefficient Comparison. 
Computational Grid. [13,14] 

A key factor was the observation that processors with a large external cache (e.g., 1 to 4 MB in 
size) could enable the use of optimization strategies that simply were not possible on machines 
such as the Cray T3D and Intel Paragon which only have 16 kilobytes of cache per processor. 
This relates to the ability to "size" scratch arrays so that they will fit entirely in the large external 
cache. This can reduce the rate of cache misses associated with these arrays, which go all the way 
back to main memory, to less than 0.1% (the comparable cache miss rates for machines such as 
the Cray T3D and Intel Paragon could easily be as high as 25%). The immediately preceding data 
(serial performance and cache miss rate) were obtained from a highly optimized version of the 
F3D code. ZNSFLOW uses most of the solver coding from this optimized FORTRAN-only 
version of F3D. However, the shared memory version of ZNSFLOW also employs C language 
coding primarily to control the main integration loop of the solver, allocate dynamic memory, and 



communicate with DICE software. Thus, there are some differences in the performance of 
ZNSFLOW and the previously mentioned optimized version of F3D. Figure 4 shows a graphical 
comparison of the "speedup" for the latest version of ZNSFLOW running on an SGI Origin 2000 
(300-MHz R12000 processor) versus the vector version of the original F3D code running on a 
single Cray C-90 processor. The data graphed in Figure 4 are presented in Table 1. Note that the 
SGI Origin execution time for the 1- and 59-million-point cases was acquired through actual time 
measurement of ZNSFLOW execution. However, only the 1-million-point case was executed on 
the Cray C-90. The performance of the 59-million-point case for a single Cray C-90 processor 
was estimated. Figure 5 displays ZNSFLOW performance graphs for 1-, 10-, and 59-million grid 
point KTA data sets. 

| Speedup Relative to 1 SGI Origin Processor (1 Million Points) 

I Speedup Relative to 1 Cray C-90 Processor (1 Million Points) 

| Speedup Relative to 1 SGI Origin Processor (59 Million Points) 

| Speedup Relative to 1 Cray C-90 Processor (59 Million Points) 

16 32 64 96 

PEs 

Figure 4. Graph of KTA Timing Data Speedup. 

Table 1. KTA Timing Data Speedup 

Grid Size (in millions 
of points) Number of Processors 

Speedup Relative to 
One Origin 2000 

Processor 
Speedup Relative to 
One C-90 Processor 

1 16 8.3 6.0 
1 32 12.0 8.6 
1 64 16.0 11.6 

59 32 21.5 6.3 
59 64 46.8 14.8 
59 96 57.8 18.3 

10 
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5a. Performance for 1-million-point data set. 5b. Performance for 10-million-point data set. 
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Figure 5. Performance Results for 1-. 10-. and 59-Million Grid Point KTA Data Sets. 

While linear speedup is desired, it is generally impossible to obtain linear speedup using 
loop-level parallelism. The best that can be achieved is a curve with a staircase effect. Because of 
the limited number of graphed computer timings in Figure 5, the staircase effect is only evident in 
one graph, the 59-million-point data set timings shown in Figure 5c. For 64 and 80 processors, the 
number of time steps per hour is nearly identical. A performance increase is shown when the 
number of processors is raised to 96. The source of this effect is the limited parallelism (especially 
when working with 3-D codes) associated with loop-level parallelism and is the basic result of 
integer division. Table 2 demonstrates this effect. Using the data in Table 2 as an example, one 
can see that the time to complete a case remains the same when 8 to 14 processors are used. 
When 15 processors are used, the computation will theoretically require only half the time of a 
computation using 14 processors. From a different perspective, the data in Table 2 show that the 
amount of time the computation requires for completion is the same for 8 to 14 processors. 
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Therefore, when one is given the option of using 8 to 14 processors, theoretically, the most 
efficient number of processors to use is 8. These points should be kept in mind to aid in 
determining efficient numbers of processors for use in actual computations. 

Table 2. Predicted Speedup for a Loop With 15 Units of Parallelism 

Number of 
processors 

Maximum Units of 
Parallelism Assigned 
to a Single Processor 

Predicted Loop- 
Level Parallelism 

Speedup 

1 15 1.000 

2 8 1.875 

3 5 3.000 

4 4 3.750 

5 to 7 3 5.000 

8 to 14 2 7.500 

15 1 15.000 

2.3.2 Distributed Memory ZNSFLOW 

The ZNSFLOW distributed memory code is the message-passing implementation of 
ZNSFLOW. To better explain the parallelization issues, an overview of the typical ZNSFLOW 
computation steps is given next. All operations proceed again on a zone-by-zone basis, with 
inactive zone data stored either in memory or on a fast mass storage device. A single zone is 
constructed of a regular NJxNKx NL block of cells aligned with 7, K, and L directions. The / 
direction is assumed to be stream wise and is treated semi-implicitly with two solver sweeps in 
the J + and J' directions. During the J + sweep, for each consecutive stream-wise plane, the grid 
points are coupled in the L direction, while they are treated independently in the K direction. 
This requires a solution of K tri-diagonal systems of size L with 5x5 blocks. In the J ~ sweep, 
the roles are reversed, with the coupling present in K direction only and L block-tri-diagonal 
systems of size K. Before the sweeping can commence, a volume calculation of the right-hand 
side (RHS) must take place (see Figure 6). An efficient parallel implementation of these two 
distinct computation phases, RHS formation, and solver sweeps, is crucial to the overall 
effectiveness and scalability of the code. 

Between the two computation-intensive stages of the code, the RHS formation yields itself 
to parallelization most easily. This is a volume computation, in which each grid point is operated 
independently, with only older values at neighboring points being required to complete the 
computation. The entire set of zone cells can be distributed over the available processing 
elements (PEs) in an arbitrary manner. However, for the sake of subsequent solver computations, 
it makes sense to decompose only K and L grid dimensions, leaving an entire J dimension 
associated with a single PE. The K-L plane is mapped onto a rectangular grid of all PEs. To 
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avoid repetition of inter-processor transfers, each rectangular portion of the K-L plane also 
contains two layers of "ghost" points that track the two closest sets of values in the sub-grids 
belonging to neighboring PEs. 

6a. RHS volume computation 6b. J + sweep 6c. /"sweep 

Figure 6. Data Orientation and Activity During ZNSFLOW Phases for the Last Zone of the 
Benchmark Problem. 

The parallelization of the solver sweeps is not as straightforward. The algorithm requires 
sequential processing in the J direction and can also be simultaneously parallelized in both K-L 
directions, only at a greatly added computational cost, e.g., via a cyclic reduction algorithm. An 
alternate method is to accept serial treatment of the J and L directions (J and KforJ' sweep) and 
to devote all PEs to parallelizing the K dimension (L for J' sweep). This approach has an 
obvious disadvantage, since the scalability is not maintained as the number of PEs exceeds either 
the NK or NL zone dimensions. In typical computations, however, the number of PEs and the 
zone dimensions are matched so that the problem does not arise. Therefore, for the solver 
sweeps, the desired data distribution has the entire J and L dimensions associated with a single 
PE, and the K dimension is decomposed among all available PEs for the J + sweep. J and K 
dimensions are associated with a single PE and the L dimension distributed for the J' sweep. 
This requires repeated reshaping of a small number of arrays between the original and two 
solver-specific layouts (see Figure 7). A number of smaller parallelization issues had to be 
resolved as well, including parameter reading and broadcasting among PEs, efficient disk 
input/output (I/O), and exchange of boundary data between zones. 
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7a. J + sweep 7b. RHS volume computation 7c. /"sweep 

Figure 7. Data Distribution During ZNSFLOW Phases. 

The initial attempt to port the ZNSFLOW code to a scalable architecture employed the Cray 
T3D and CRAFT (not an acronym) shared memory programming model. The advantages of code 
maintainability and ease of transition were offset by the poor performance, and alternate 
approaches were explored. The more difficult task of rewriting the code in a message-passing 
framework was undertaken, and the parallel virtual machine (PVM)-based code provided initial 
speedups. The reshaping of the arrays during solver sweeps was, however, a difficult target for 
efficient implementation when two-sided PVM communication was used. A much better solution 
was found in the form of the one-sided shared memory (SHMEM) Cray communication libraries. 
In addition to eliminating concerns about deadlocking, the use of SHMEM reduces message 
latency and increases bandwidth. Apart from the communication issues, some scalar optimization 
of the code was attempted in order to extract a reasonable fraction of peak speed on cache- 
constrained architectures, but that aspect still leaves something to be desired. A variation based on 
the message-passing interface (MPI) library has since been added to the code base in order to 
ensure portability to platforms that do not support SHMEM, such as IBM SP and the Sun HPC. It 
is anticipated that both the SHMEM and MPI portions will be replaced with a single one-sided 
MPI-2 version as this standard becomes widely accepted. 

Speed and scalability of the message-passing code is tested on three architectures, using 
Mach 1.8 flow past an ogive cylinder at a 14° angle of attack on a three-zone 1-million-point 
coarse grid, and the same geometry at Mach 2.5 on a 10-million-point fine grid. The results are 
listed in terms of time steps per hour in Tables 3 and 4 and are shown in graphical form in 
Figures 8 and 9. The Cray T3E and SGI Origin platforms use the SHMEM-based version of 
ZNSFLOW, while the IBM SP employs the less efficient MPI-based version. For comparison, 
the Cray C-90 version of the code achieved 227 time steps per hour for the 1-million-point case. 
As expected, the plots show better scalability for the refined grid than for the coarse one, as parts 
of the current implicit solver contain parallelism only of the order of K or L dimensions. These 
dimensions are 75 and 70, respectively, for the coarse grid, and 180 and 140 for the refined one. 
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The graphs exhibit visible notches around 70 and 75 PEs for the coarse grid and around 70 PEs 
for the fine grid; these are thresholds at which the integer number of points per PE (for the loops 
with KoxL parallelism) decreases by one. A number of predictable secondary gradients in 
performance occur as the integer number of points per PE changes for the K-L layouts. A sample 
Mach number field at the conclusion of the 1-million-point simulation is shown in Figure 10. 

Table 3. Scalable Performance of Distributed Memory ZNSFLOW Solver on Several 
Platforms in Time Steps per Hour for the 1-Million-Point Case 

PEs T3E-1200 02K (300 MHz) SP (160 MHz) 
8 349 382 199 
16 616 618 288 
24 888 838 335 
32 1062 882 342 
40 1324 989 374 
48 1431 1083 420 
56 1642 1161 428 
64 1705 1050 423 
72 2141 1326 405 
80 2280 1382 420 
88 2443 1320 396 
96 2478 
104 2673 
112 2711 
120 2914 
128 2948 

Table 4. Scalable Performance of Distributed Memory ZNSFLOW Solver on Several 
Platforms in Time Steps per Hour for the 10-Million-Point Case 

PEs T3E-1200 02K (300 MHz) SP (160 MHz) 
16 70 41 
24 99 84 54 
32 127 97 62 
40 152 113 72 
48 179 142 81 
56 190 134 84 
64 203 133 89 
72 248 158 93 
80 247 157 94 
88 276 153 95 
96 298 
104 317 
112 337 
120 355 
128 327 

15 



|T3E-120Q □o2K(300MHli       BlMI SP (160 MHlj | 

•t    »6   10«   Iti   120 12« 

Figure 8. Graph of Scalable Performance of Distributed Memory ZNSFLOW Solver on Several 
Platforms for the 1-Million-Point Benchmark Case. 
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Figure 9. Graph of Scalable Performance of Distributed Memory ZNSFLOW on Several 
Platforms for the 10-Million-Point Case. 

16 



Figure 10. Ogive Cylinder: Mach Number Contours for the 1-Million-Point Case. 

2.4 ZNSFLOW Validation 

The predecessor of ZNSFLOW, F3D, has a long track record of providing accurate CFD 
computations. There are numerous reports that document CFD results obtained with this solver, 
and some are listed in the reference section of this report. Some sample cases are provided to 
users of ZNSFLOW when they obtain the code. These cases are simple, classic CFD 
computations that demonstrate the accuracy of the code and show how to correctly apply the 
ZNSFLOW solver. Each validation case is provided with experimental data for comparison. 
Validation cases are completely documented within the yet-to-be formally published ZNSFLOW 
user manual entitled, "Documentation and User's Guide for the ZNSFLOW Code".[15] A copy 
of the ZNSFLOW user manual is provided when the ZNSFLOW software is obtained. The 
ZNSFLOW user manual may also be downloaded from the ZNSFLOW CHSSI web site at 
http://www.arl.hpc.mil/chssi/cfd6/. 

ZNSFLOW software has also been reviewed by the DoD high performance computing 
modernization office CFD computational technical area (CTA) lead, Jay Boris, during required 
CHSSI software tests in May 1998. ZNSFLOW met or surpassed scalable speedup criteria for 
available computers, and the validation cases provided documentation of the solver's 
computational accuracy. 
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3. THE DISTRIBUTED INTERACTIVE COMPUTING ENVIRONMENT (DICE) 

As stated earlier, ZNSFLOW is a suite of codes. Part of that suite is DICE.[16] DICE 
provides a GUI that allows a user to create an input file for the ZNSFLOW solver. DICE can 
also be used to execute the ZNSFLOW solver once the input file has been created. In addition, 
once the solver is executing, DICE can provide real-time visualization of the flow field as it is 
being computed. Even if the execution of the solver were initiated from a previous day, DICE 
would allow the user to connect to the application on a remote computer and visually monitor its 
progress on a local workstation. DICE provides a number of options for visualizing data. The 
user can choose surface contours, iso-surfaces, x-y plots, or spreadsheets to display the data. At 
present, only the shared memory solver has been integrated into DICE. However, DICE can still 
be used to create the input file and perform visualization of solution files when it is used with the 
distributed memory solver. 

Figure 11 shows some of the GUI windows that a user may access. A flow field 
visualization window is visible. The user may interactively rotate or translate the object in the 
window to view the flow field from any position. Beneath the visualization window is the 
boundary condition setup window. To the right of the boundary condition window is a data 
directory window. This allows the user to drag and drop specific solver-generated data to DICE 
utilities such as the iso-surface plotter. Farther to the right is the solver execution window. More 
controls for executing the solver on multiple platforms are available. To the right of the 
visualization window is the main interface from which all the other windows are initiated. 

It is important to note that DICE is not only a GUI but an environment that includes a 
heterogeneous distributed memory system called network distributed global memory (NDGM).[17] 
NDGM uses a client-server approach that allows separate distributed applications to access a single 
contiguous data buffer that may span the memory of several computers. This system forms the 
bottom layer of the DICE data hub. The hierarchical data format (HDF) from the National Center 
for Supercomputing Applications (NCSA) serves as a data organization layer above NDGM. 
HDF4 has been modified to allow data sets to exist on disk, in NDGM, or in both. For example, a 
static grid could be stored on disk for local access, while calculated scalars could be stored in an 
NDGM buffer that is revised at every computational iteration. A convenient interface layer sits 
above HDF and provides consistent access to both structured and unstructured data as well as 
groups of data sets. This layer contains both tool command language (TCL) and C programming 
language application programmers' interfaces (APIs). Together, these three layers comprise the 
data hub in DICE and are known as the DICE data directory. Direct access to the DICE data 
directory by a code is accomplished via the DICE application interface (DAI). Several heavily 
used codes have been outfitted with DAI calls to allow run time visualization. The DICE data 
directory has proved extremely useful as a common data rendezvous for codes executing on HPCs 
and visualization. 
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Figure 11. DICE GUI Windows. 

NDGM provides DICE with a physically distributed, logically shared, unstructured memory 
buffer. Instead of handling the mapping and un-mapping of memory pages automatically, 
NDGM is accessed through a subroutine interface. While less automatic, this allows applications 
to form a "cooperative shared memory" that is simple yet efficient. NDGM is a client-server 
system that consists of multiple server processes and an API for clients. Each server maintains a 
section of a virtual contiguous buffer and field requests for data transfer and program 
synchronization. Clients use the API to transfer data in and out of the virtual buffer and to 
coordinate their activity. Calls to the API result in lower level messages being sent to the 
appropriate NDGM server which keeps track of its piece of the total virtual buffer. The API 
translates the global memory address into a local address that the server then transfers from its 
local memory. 

Client programs use the API to access the virtual NDGM buffer as contiguous bytes. No 
structure is placed upon the NDGM buffer; the application can impose any structure on this 
buffer that is convenient. In addition, NDGM is designed to implement a system of applications 
in contrast to a single monolithic parallel application. The API includes facilities to get and put 
contiguous memory areas, get and put vectors of data, acquire and release semaphores, and to 
initialize and check into multiple barriers. For synchronization purposes, the API provides 
barriers and semaphores. Checking into a barrier will result in the process blocking until the 
barrier value reaches zero. Requesting a semaphore will block until the client who currently 
owns the requested semaphore releases it. 
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The NDGM server process handles all requests for data transfer and synchronization. This 
is a stand-alone program that waits for new connections from clients and services their requests. 
Each server maintains a local memory buffer that maps into the virtual buffer address space. 
This local buffer can be in one of three locations: local address space (obtained via the "malloc" 
command), system shared memory, or a local file. If system shared memory is used, a client 
executing on the same physical machine as the server accesses the shared memory instead of 
making requests to a server. This access is transparent to the NDGM client application and 
results in faster data transfers. Using a file as the server's local storage allows NDGM servers to 
restart with their local memory already initialized. 

Clients and servers run on top of a layered MPI. Similar in concept to well-known message- 
passing interfaces such as PVM or MPI, this layer provides a level of abstraction, freeing the upper 
layers from the details of reading and writing data. The NDGM message-passing layer has fewer 
facilities than either PVM or MPI but is designed to pass NDGM data efficiently with minimal 
copying. This layer provides calls to establish connections, send messages, probe for incoming 
messages, read messages, and close connections. 

The actual inter-process data transfer is accomplished by the drivers. Current drivers include 
transport control protocol/internet protocol (TCP/IP) sockets, PVM, and first in-first out (FIFO). 
Each driver has functions to open as a client or server, read, write, and probe for incoming 
messages. When possible, each driver also implements a "select" function to monitor several open 
connections. A single NDGM system can mix nodes that use different drivers. 

NDGM has been used to develop parallel applications, but it is particularly useful as a "data 
rendezvous" for a collection of applications. A parallel computationally intensive code can write 
a snapshot of data to NDGM and then continue its processing. The data can then be visually 
inspected through 2-D plots and 3-D surfaces, but they do not inhibit the progress of the code. 
NDGM provides a distributed, heterogeneous unstructured buffer. To provide some structure to 
this buffer, DICE uses HDF, a well-known and widely used format. HDF is designed to allow an 
orderly access to structured and unstructured data sets. All access is accomplished through a well- 
defined application programmer's interface. HDF is designed to access data via disk files. DICE 
alters some of the low level access routines to allow HDF to access NDGM as well as disk files. 

HDF defines a full-featured data format for structured and unstructured data sets as well as 
groups of data. It does not place restrictions on the organization of these data sets. To simplify 
access, DICE adds a convenience layer on top of HDF, which has been previously mentioned—the 
DICE data directory (DDD). Modeled after the UNIX™ file system, DDD provides facilities for 
mounting data sets and making subdirectories to help organize complex data. DDD provides for 
structured data sets, unstructured data sets, and directories. In addition, DDD provides a 
"reference" data set that points to a subsection of previously defined data. In this fashion, a single 
data file can reside on disk, in memory, or in both and can contain many different types of data. 

Through the use of NDGM, HDF, and DDD, the data organization of DICE provides a 
level of abstraction for enormous distributed data sets. Computational code, visualization, and 
user interface can all interact with the data in a well-defined method without severely limiting 
performance. Since all the sections are modular, portions of the data abstraction can be 
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physically located to optimize the whole application's usability. DICE has proved to be an 
exceptional computational environment for high performance computing software and is 
currently used to support several codes developed under CHSSI in different CTAs. 

4. ZNSFLOW DEMONSTRATION CASES 

Demonstration cases were chosen to show the capabilities of the ZNSFLOW software. 
Both of the demonstration problems require viscous Navier-Stokes CFD modeling for accurate 
flow field solutions. Two demonstration cases were run on an SGI Origin 2000 computer. The 
first of the two cases to be discussed is the guided multiple launch rocket system (MLRS) 
missile. The guided MLRS computational model is built to answer questions about the use of 
canards to perform controlled maneuvers for a missile with wraparound tail fins. A second 
demonstration case shows the capability of ZNSFLOW to model complex multi-body systems. 
Computational models were built for computing the flow field around 10 BAT sub-munitions 
being ejected from an Army tactical missile (ATACM). The complexity and uniqueness of this 
type of multi-body problem result from the aerodynamic interference of the individual 
components, which include 3-D shock-shock interactions, shock-boundary layer interactions, 
and highly viscous-dominated separated flow regions. 

4.1 Computations for the Guided MLRS Missile 

The computations will hopefully provide insight for engineers into the interaction of 
canard-induced flow field disturbances with the down-stream wraparound tail fins. Providing 
control for a missile with wraparound tail fins is more complex than with normal tail fins. The 
curvature of the wraparound fins allows for easy storage because the fins fold against the missile 
body while in the launch tube. Immediately after launch, the fins unfold to stabilize the missile. 
The cylindrical shape of the wraparound fin is advantageous for packaging, but it can also 
compromise the dynamic stability of the missile. Wraparound fins have a number of unique 
aerodynamic traits, the most infamous of which is the roll moment that they generate; this may 
change in sign and magnitude during the course of a trajectory. The roll moment contributes to 
the missile spin rate. During the course of flight of a wraparound fin missile, it is possible for its 
spin rate to increase or decrease more than once. In addition, the direction of spin may change. 
This type of behavior can produce poor flight dynamics. CFD can be a useful tool for predicting 
the aerodynamics of wraparound fin missiles.[18,19] The information gained from the 
computations will hopefully aid in a successful design of the guided MLRS and future missiles 
equipped with wraparound fins. 

Initial computations have provided interesting information about the guided MLRS missile 
flow field. Wind tunnel data for a similar geometry are available for comparison. The nose and 
canard geometries of the computational model vary slightly from the wind tunnel model. 
However, the results still provide insight and demonstrate the capability of ZNSFLOW for 
providing flow field solutions for this configuration. The computations have been run at 0° angle 
of attack at velocities of Mach 1.6 and Mach 2.2 and at 10° angle of attack at Mach 1.6. For all 
computations, each canard has a deflection of 10°. A large computational model that exceeds 
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24 million grid points was made for flow field computations of the missile at angle of attack. 
The computations demonstrated the ability of ZNSFLOW software to handle large data sets. 
The computational models used for the 0° angle-of-attack case exploited symmetry and were 
one-fourth the size of the computational model used for the angle-of-attack case. 

Figure 12 shows a ZNSFLOW-computed solution of the guided MLRS missile at Mach 1.6 
and 0° angle of attack. Figure 13 shows a ZNSFLOW-computed solution of the guided MLRS 
missile at Mach 1.6 and 10° angle of attack. The flow field changes substantially with the 
increased angle of attack. Figures 12a and 13a show pressure contours on a plane 1.4 calibers 
from the nose. This plane is just aft of the canards. The location of the vortices generated by the 
canard tips can be seen as small, circular low pressure regions near the canard tips. Figures 12b 
and 13b are 3.7 calibers from the nose. The flow field at 0° angle of attack is symmetrical, but 
the flow field for the 10° angle of attack is asymmetrical. Most noticeable is a large low-pressure 
region on the visible side of the body. Since the missile is flying at angle of attack, the deflected 
canard beneath the body directs more air to the visible side of the body. This low pressure region 
extends to the rear of the missile and is visible in Figure 13c, which is approximately 14 calibers 
from the nose and is just in front of the tail fins. Figure 12c is at the same location as Figure 13c. 
Figure 12c again shows the symmetrical flow field at 0° angle of attack in contrast to the 
asymmetrical flow field generated at 10° angle of attack shown in Figure 13c. In Figure 12c, 
the light contour shade between the dark contours near the body indicates the locations of the tail 
fins. The dark pressure contours in Figure 12c indicate that the position of the canard tip vortices 
is actually between the wraparound tail fins. 

12a. Normalized pressure contours   12b. Normalized pressure contours   12c. Normalized pressure contours 
1.4 calibers from nose tip. 3.7 calibers from nose tip. 14.4 calibers from nose tip. 

Figure 12. Normalized Pressure Contours at Mach 1.6 and 0° Angle of Attack. 

Visualization using particle traces has also provided some insight to the guided MLRS flow 
field. Figure 14 shows particle traces released from the wakes of the deflected canards. The 
particle traces for Figure 13a were generated from a Mach 1.6 flow field solution, while the particle 
traces for Figure 14b were generated from a Mach 2.2 solution. Figures 14a and 14b indicate that 
the flow fields are similar at Mach 1.6 and Mach 2.2 at 0° angle of attack. An interesting note is 
that particles released at the base of the canards nearly hit the base of the tail fins. However, 
particles released at the canard tips are caught in a vortex that passes between the fins. The particle 
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traces in Figure 14c are an indication of the differences in the flow field for a guided MLRS missile 
at 0° and 10° angle of attack. The particle traces for Figure 14c were generated from a Mach 1.6 
flow field solution at 10° angle of attack. The traces show that particles released from the canard 
wakes are swept to the lee side or upper side of the missile body. As mentioned earlier, the canard 
beneath the missile deflects more air flow to one side of the body, creating a large difference in the 
flow fields on the sides of the body. For the 10° angle-of-attack case, only the canard tip on the far 
side of the body generates a strong vortex. An indication of this vortex is the small dark circle on 
the left side of the body, which is visible in Figure 13b. 

13a. Normalized pressure contours   13b. Normalized pressure contours   13c. Normalized pressure contours 
1.4 calibers from nose tip. 3.7 calibers from nose tip. 14.4 calibers from nose tip. 

Figure 13. Normalized Pressure Contours at Mach 1.6 and 10° Angle of Attack. 

The ATACM-BAT multi-body problem involves the radial dispensing of several BAT sub- 
munitions (see Figure 15) at a low supersonic speed. This case is ideally suited for the Chimera 
over-set grid technique described earlier. The Chimera scheme allows each BAT to be modeled 
with its own simple orthogonal grid as seen in Figure 16. The trajectory of the 3-D radial 
dispensing sub-munitions depends on the initial ejection velocity. The flow field is complex and 
involves 3-D shock-boundary layer interactions and ATACM-to-BAT as well as BAT-to-BAT 
interactions. Detailed experimental or theoretical data were not available to help evaluate the sub- 
munition dispensing phenomenon for the entire BAT system, and thus the numerical solution of 
this problem was initiated. [20-22] The Chimera solution procedure was successfully used to help 
determine the aerodynamic interference effects. [21] 

For a set of wind tunnel experiments, the position of the sub-munitions was set in order to 
evaluate flow field correction factors for nonsymmetrical dispensation at a distance near and far 
from the bay. The flow field correction factors are used in six-degree-of-freedom simulations of 
BAT dispensation for differing conditions. CFD computations were made for two configurations: 
Configuration A, which places the sub-munitions relatively close to the missile bay, and 
Configuration B, which places them farther away from the turbulence generated by the missile 
bay. For both Configurations A and B, there is equi-distant circumferential spacing for each sub- 
munition except one, which has a 5° offset. The sub-munition with the circumferential offset is 
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located at approximately the 11 o'clock position. Figure 17 provides a visual reference for the 
sub-munition positions for Configurations A and B. 

Figure 14a. Particle traces for Mach 1.6,0° angle of attack. 

Figure 14b. Particle traces for Mach 2.2,0° angle of attack. 

Figure 14c. Particle traces for Mach 1.6, 10° angle of attack. 

Figure 14. Particle Traces at Various Mach Numbers and Angles of Attack. 

4.2 Computations for BAT Sub-Munitions Ejecting From AT ACM 

Surface pressure contours are shown for Configuration A in Figure 18 and for Configuration 
B in Figure 19. The surface pressures on the Configuration A sub-munitions reveal much stronger 
pressure gradients than the sub-munitions in Configuration B. Also, surface pressure contours 
within the AT ACM missile bay are somewhat different between Configurations A and B. The 
stronger pressure gradients on the Configuration A sub-munitions, which are much closer to the 
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AT ACM missile bay, are indicative of the higher pitching moments generated, which tend to push 
the nose of the BAT sub-munitions radially inward toward the AT ACM missile bay. Since the 
computations include multiple BAT sub-munitions, BAT-to-BAT interactions are included. 
These interactions are critical and have a strong effect on the aerodynamic forces and moments. 
The normal force and pitching moment coefficients vary between the sub-munitions, indicating 
the asymmetrical nature of the interacting flow field. 

Figure 15. Diagram of the Multi-body System. Figure 16. Grids for the BAT Sub-Munition Dispensing 
from ATACM. 

Some experimental data [23] were available for comparison with the computational results 
of Configuration A. Figure 20 provides a visual reference for location of the B ATs that were the 
source of the experimental data. A BAT at approximately the 5 o'clock position was equipped to 
record pressure data. Pressure data were collected on the side of the BAT closest to the ATACM 
and on the side facing away from the ATACM. On either side of the BAT, pressure data were 
taken at five positions. Unfortunately, the pressure data obtained from the experiment on the side 
of the BAT facing the ATACM do not appear to be accurate. However, the pressure coefficient 
data computed from the CFD solution on the side of the BAT facing the ATACM are plotted in 
Figure 21. Figure 22 shows a comparison between the pressure coefficient obtained from 
experimental and CFD-calculated data on the side of the BAT facing away from the ATACM. 
Both Figures 21 and 22 show the pressure coefficient as a function of the length of the BAT body 
in which X/L = 0 corresponds to the BAT nose and X/L = 1 corresponds to the end of the BAT 
body. Figure 22 shows that the pressure coefficient computed from the CFD solution is in very 
good agreement with experimental data. The CFD-computed data plotted in Figures 21 and 22 
provide an interesting comparison that demonstrates the asymmetry of the flow field about the 
BAT and the strong influence of the ATACM proximity to the BAT. Although the comparison 
between the experimentally obtained and CFD-computed pressure coefficient is quite good, the 
comparisons between experimentally obtained and CFD-computed force and moments indicate 
that some flow field characteristics may not be captured accurately by the CFD solution. 
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Figure 17. Configuration A and B Sub-Munition 
Location. 

M. t 

E 
0.25 1.00 1.75 ZiO 

Figure 18. Normalized Surface Pressure 
Contours for Configuration A. 

K 

":5Bp^|r- 
-_.^;' 

■^     "M^T- ■ 

0.25 1.00 1.79 2J0 

Figure 19. Normalized Surface Pressure 
Contours for Configuration B. 

Configuration A 

BAT located '7.60 'si 
from ATACM center    ^s\ 

Inner BAT surface where 
y**—«s.         pressure coefficient data 

where force and moment /   -fife   l       were collected. 
cuto were collected.      ^^ KM/ # / 

|P% 
ATACM    * ^W 7 

:i»v  ' 
yJ \ 

BAT located 14.85 fsi from                           Outer BAT surface where 
ATACM center where force and                 pressure coefficient data 
moment uatu were collected.                      were collected. 

Figure 20. Locations Where Experimental 
Data Were Collected. 

c  2.00 -1 
a 
Ö   1.50 - 

1   1.00 - 
O  0.50 - 

%  0.00 - 

" -0.50 - 
9 
a-1.00 - 

C 

I——Computation I 

I        ^ - ^^ 

0.25          0.5          0.75 

X/L 

1 

c    2.00 -, 
s 
o    1.50 - 

«    1.00- 

O    0.50 - 

| Computation 0   Experiment | 

|    0.00 - 

Jo   -0.50 ■ 

a  -1.00 - 

C 1           0.25          0.5 

X/L 

0.75            1 

Figure 21. Pressure Coefficient Versus BAT Length    Figure 22. Pressure Coefficient Versus BAT Length for 
for BAT Surface Facing ATACM. BAT Surface Facing Away From ATACM. r231 

26 



Force and moment data were collected from the BATs located at the 12 o'clock and 6 o'clock 
positions. The BAT at the 12 o'clock position has a radial distance from the ATACM center of 
17.60 full scale inches (fsi). The BAT at the 6 o'clock position has a radial distance from the 
ATACM center of 14.85 fsi. Figure 23 shows both the experimental data and the data computed 
from the CFD flow field solution. The data in Figure 23 indicate that the CFD-computed data 
match the experimental data of the BAT 17.60 fsi from the ATACM center more closely than the 
experimental and computed data of the BAT 14.85 fsi from the ATACM center. The data for the 
normal force (CN) are in good agreement for the BAT 17.60 fsi from the ATACM center. The 
side force (CY) data appear to be the same for the CFD-computed side force and the experimental 
side force. This is somewhat misleading because the magnitude of the side force is much smaller 
than the normal force and pitching moment, Cmz (coefficient of moment about the Z axis). The 
relatively small side force is a good indication that the BATs are not likely to move closer together 
when being ejected from the ATACM bay at 0° angle of attack. The difference between the 
pitching moment for experimental data and CFD-computed data is less for the BAT farthest from 
the ATACM. This seems to indicate increased difficulty in computing the flow field for the 
ATACM-BAT multi-body problem accurately when the BATs are almost in the ATACM bay. 

The drag coefficient computed from the CFD solutions compares very well with the 
measured drag coefficient. Figure 24 shows a plot for the drag coefficient of the same BATs that 
were instrumented to obtain the force and moment data displayed in Figure 23. In the 
experiment, each BAT was mounted on a "sting." The stings were not modeled in the CFD 
computation. The total drag coefficient was obtained from a force measurement of the BAT with 
sting. The experimental value of the BAT forebody drag was estimated by taking a pressure 
measurement near the BAT base and using it to estimate the base drag component of the total 
drag coefficient. The base drag component was then subtracted from the total drag to obtain the 
forebody drag. An interesting note is the increase in drag with the increased distance of the BAT 
from the ATACM center. 
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5. ZNSFLOW USER CASES 

It is also important to demonstrate that other organizations are capable of using the 
ZNSFLOW software. Examples of cases chosen by potential ZNSFLOW users for code 
demonstration are shown in this section. The two demonstration cases depicted are the theater 
high altitude area defense (THAAD) missile and Sea Sparrow missile. They are shown in 
Figures 25 and 26, respectively. The THAAD computational model was supplied by Rex 
Chamberlain of Tetra Research in Huntsville, Alabama. [24] Bob Burman of the Naval Air 
Warfare Center in China Lake, California, provided the Sea Sparrow computational model.[25] 
Solutions were obtained for both cases on a multi-processor SGI Onyx computer. The 
computational model for the THAAD missile was a three-zone, one-to-one grid point overlap 
computational mesh, and the Sea Sparrow computational model employed the Chimera scheme 
to provide communication among its five zones. Both computational models used pitch-plane 
symmetry. The THAAD missile computational model was built using 1,883,805 grid points, 
while the Sea Sparrow missile used 2,233,500 points. Each case could be ran in parallel under 
DICE and could be visualized interactively on the Onyx computer. 

Figure 25. Mach Contours of THAAD Missile      Figure 26. Surface Pressure Contours on Sea Sparrow 
Flow Field at 10° Angle of Attack Missile. 

6. CONCLUDING REMARKS 

A broad overview of the software developed under the CHSSICFD-6 project has been 
presented. The scalable Navier-Stokes solver executed through the interactive computing 
environment, DICE, provides engineers with a fast and comprehensive CFD computation and 
analysis tool for complex configurations that require large computational resources. However, 
the solver can perform computations for simple cases just as well. The software allows the user 
to perform, monitor, and visualize the computations on large HPCs without copying the 
computational mesh and solution to their local workstation. The comprehensive interface 
provides control for every aspect of the computation. It was also demonstrated that the 
ZNSFLOW software provides accurate and visually informative results for large complex 
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configurations such as the guided MLRS missile and BAT dispersal from AT ACM. The 
predictive numerical capability documented allows for accurate computation of flow fields that 
capture complex aerodynamic phenomena, such as interference effects, required for the improved 
design and modification of current and future DoD projects. 
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TURBULENCE MODELS USED IN ZNSFLOW 

ZNSFLOW has three options for modeling turbulence: the Baldwin-Lomax model, the one- 
equation point-wise turbulence model, and two-equation point-wise turbulence model. Following 
is a brief description of the models' formulation. 

1. BALDWIN-LOMAX MODEL 

This is an algebraic, two-layer model with the attractive feature of removing the necessity 
of determining the displacement thickness or the wake thickness and instead uses the distribution 
of vorticity to determine the length scales in the outer model. 

The model is subdivided into an inner and an outer model. The inner model is applied 
between the body surface and a cross-over point where the inner viscosity exceeds the viscosity 
evaluated using the outer model. The outer model is applied outward from the cross-over point. 
The inner model employs the Van-Driest mixing length approach and uses the following: 

(uT)      - p I21 co I (1) Vr*T / inner       r \ | v   ' 

in which 
/ = £y[l-exp(-y+/A+)] (2) 

Here, y is the coordinate normal to the surface and | co I is the magnitude of the local vorticity. The 
constants, k and A+, have the values 0.4 and 26.0, respectively. The nondimensional boundary layer 
coordinate, y+, is a function of the fluid viscosity vw, fluid density pw, shear stress TW, and the 
dimensional distance from the wall, y. The subscript w indicates that the quantities are to be 
evaluated at the body surface. For wake flows, the exponential term shown above is set to zero. 

/ = ÜÜ1 (3) 

In the outer region, the model takes the form 

(MT) outer- PKCcpFWakeFKLEB(y) 

in which FKLEB (y) is the Klebanoff intermittency factor which can be written as 

' KLEB W _ 

and K = 0.0168, Ccp = 1.6, CKLEB = 0.3. 

/max 

(5) 
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The parameter FWAKE is evaluated as 

FWA„ = smaller of [(ymaxFmax)...or...{CWKyimxu
2

DIF /F^)\ (6) 
WAKE 

in which uDIF is the total velocity difference across the boundary layer or wake and CWK was 

originally assigned a value of 0.25 by Baldwin and Lomax, although more recently, a value of 1.0 
has been used.  F^ is determined from the maximum value of the function F(y), evaluated from 

F(y)=v|ö)|[l-exp(-y+/A+)]. (7) 

While y^ is the value of y whereby F{y) equals F^ . For wake flows and separated 

boundary layers, attention needs to be paid to the appropriate normal direction. In attached 
boundary layer calculations, FWAKE = ynaxFmax is used. 

2. POINT-WISE TURBULENCE MODEL 

To overcome the ambiguity of the wall distance in turbulence formulations, Goldberg et al. [26] 
proposed the use of wall proximity indicators that are local, i.e., point-wise in nature and that indicate 
the influence of the walls indirectly through parameters. These wall-distance-free models are 
tensorially invariant and frame indifferent, making them applicable to arbitrary topologies and moving 
boundaries.   They have been shown to be independent of structured and unstructured meshes and 
computer architecture, including massively parallel machines. 

The following is based on and summarizes Goldberg's "Summary of Linear Topology-Free 
One- and Two-Equation Turbulence Models." 

2.1 Formulation of Wall-Distance-Free Turbulence Models 

2.1.1 One-Equation Model 

The one-equation model consists of solving the transport equation for the undamped eddy 
viscosity (R): 

DR   a 
p = — 

Dt     dx, 

f      fi, )dR 
jU + — 

dx, 
+ ClP(RPk)

in-(C3f3-C2)pD (8) 

in which Pk is the turbulence production expressed in terms of the Boussinesq model and D is 

the destruction term. The eddy viscosity field is given by 

P,=fMpR W 
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in which 

/,= 
tanhjax ) 

tanh(j6fr2) 

The damping function 

pR 

/3=1 + 
2a 

3ßC3X 

(10) 

(11) 

(12) 

is derived from asymptotic arguments, and the value of C3 = 1.146, with the value of ß =0.2, 

and a =0.07. Equation (8) is subject to the boundary condition that on solid walls R = 0, while 
free stream inflow and initial conditions demand /?   < v^. 

2.1.2 Two-Equation Model 

The Reynolds stresses are related to the mean strain gradients through the Boussinesq 
model, and the eddy viscosity contains a damping function. For details of the derivation, the 
reader is referred to in reference [6]. The turbulence kinetic energy and the dissipation rate, k and 
e , are determined by the transport equations 

dt       dxj     J dXj 
n+ V>, dk 

dX: 
+ Pk-pe (13) 

d(ps)      d  ,TT      .      d H   • + — (Ujp£)- — 
dt       dx. BX: 

iß + —)- 
(7,   dx, 

+ iCBXPk-Ce2p£ + E)Tr 
-i 

in which Pk is the turbulence production modeled following the Boussinesq concept. The 

realizable time scale is 

r,=-max{l,-^=} 

(14) 

(15) 

The model includes an extra source term, E, that is designed to increase the level of e in non- 
equilibrium flow regions. This reduces the length scale and improves the prediction of adverse 
pressure gradient flows. 

in which 

and 

E = AEpv^£Tr
x¥ 

dk 3T m xF = max{ ,0} 
dXj dXj 

(16) 

(17) 
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v=max{*1/2,(v£)I/4} (18) 

The model constants are Cr = V2 and AE = 0.3. The boundary conditions are as follow: at walls, 
the kinetic energy of turbulence and its first normal-to-wall derivative vanish. The boundary 
condition for e is based on its near-wall asymptotic behavior, i.e., 

ew=2v1\ (19) 

in which "1" denotes the first internal node. This boundary condition implies that (dk/dy)w = 0, 
thus satisfying the second boundary condition for k implicitly. 
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COMPUTER SCIENCE ISSUES BEHIND THE SUCCESS OF CHSSI PROJECT CFD-6 

1. INTRODUCTION 

When the CHSSI PROJECT CFD-6 was first conceived, two important software issues and 
one important hardware issue had yet to be resolved, which would have a strong bearing on the 
success or failure of this project: 

a. What (if any) benefit do large memory high performance computing jobs receive from 
the benefit of a memory hierarchy involving one or more levels of cache memory? 

b. Can implicit CFD codes be successfully parallelized without damaging their convergence 
properties and/or requiring significant modifications of the algorithm? 

c. Assuming that large memory high performance computing jobs do benefit from the 
presence of cache memory, which is better: large caches or faster access to the main memory? 

2. MEMORY SYSTEM ISSUES AND SERIAL EFFICIENCY 

According to David Bailey (formerly at NASA Ames Research Center), his experiments on 
Intel i860 processors showed that caches were of limited or no value to large memory high 
performance computing jobs. [27] Based on this work and those of several other major researchers 
in the fields of computer architecture and/or the computational sciences, the benefit of cache 
memory was highly dubious. This was a disturbing conclusion since this project was expecting to 
use scalable parallel processors based on RISC processors and dynamic random access memory 
(DRAM). The problem with this is that the speed of the processors was increasing rapidly, while 
the bandwidth to memory was increasing slowly, and the memory latency was barely changing at 
all. Therefore, unless cache memory could be shown to be of value, it was expected that it would 
be only a matter of time before continued improvements in the peak speeds of the processors 
would become irrelevant. 

Early experiments in running code (not optimized for the SGI RISC processors) were not 
very encouraging. These experiments were run using a single processor of a 75-MHz (300 
Mflops4 peak speed) R8000-based SGI Power Challenge. Compared to the performance of 
running an in core version of the F3D code on one processor of a Cray C-90, it was hoped that 
the code running on the Power Challenge would decelerate by roughly a factor of 3. In fact, a 
deceleration of roughly a factor of 45 was observed. Further experiments based solely on the use 
of compiler options (run by Daniel Pressel) proved to be of limited benefit. Clearly at this time, 
things were not looking good for architectures based on DRAM main memory and one or more 
levels of cache. 

4One million floating point operations per second 
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At that time, efforts had been aimed at minimizing the changes in the code in the hopes of 
having a single program that would perform well on both vector processors and scalable parallel 
processors. This approach was abandoned, and traditional tools (e.g., profiling) were applied to 
the problem. The concept here was that vectorizable code was designed to run on vector 
processors (Cray vector processors, to be specific). As a result, the code was written in a manner 
that would keep the vector processor busy. At the same time, issues such as locality of reference 
or required memory bandwidth were of little concern since these machines made few 
assumptions concerning locality of reference, supported very high levels of memory bandwidth, 
and vector processing was inherently tolerant of moderate levels of memory latency. 

Using these tools, it was easy to see where the hot spots were in the program. Further 
analysis produced the following conclusions: 

a. Many of the loops in the program were accessing the large arrays with a large stride. 
Frequently, this resulted in a high cache miss rate. In all cases, it resulted in a high TLB miss 
rate, which was just as bad (TLB is the part of the memory system that maps addresses from the 
logical address space of a program to the physical address space of main memory). This problem 
was addressed through a combination of four main techniques: 

(1) Reordering the indices of the arrays; 

(2) Reordering the loops in the loop nest; 

(3) The judicious use of matrix transpose operations (for invariant/relatively invariant 
arrays, the matrix transpositions should be kept in memory in between uses and revised only 
when they need to be); and 

(4) Blocking. 

b. Some cases of copying between large arrays were relics of the code since it was written 
as an out-of-core solver. In general, it was possible to eliminate this copying. While originally 
this was not productive, had this not been done, it could have easily represented half of the 
remaining run time when the other optimizations were performed. 

c. Some of the loops were using scratch arrays to pass data from one loop to the next. The 
main justification for not merging the loops was that the merged loop was too complicated for 
the vectorizing compiler to automatically vectorize. Since this was no longer a concern, the need 
to use these arrays represented a performance problem; the loops were merged, and the scratch 
arrays were eliminated. 

d. When cache-based architectures are used, it is highly desirable to perform as many 
calculations on a set of values as possible, before moving to the next set of values. This is in 
sharp contrast to vector codes wherein one wants to maximize the number of times the same 
operation/set of operations can be performed on independent sets of values. As a result, vector- 
oriented code will inherently require a much higher memory bandwidth to obtain the same level 
of performance. Two related examples of how this information can be used are 
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(1) If one has a loop nest such as: 

DO ...M=l,5 
DO ... N=l,5 
DO...L=l,LMAX 
DO... K=1,KMAX 
Several lines of code involving arrays such as A(K,L,N,M). 

It will probably produce far fewer cache and TLB misses if the loop nest can be 
rewritten as 

DO... L=1,LMAX 
DO ... K=1,KMAX 
DO...M=l,5 
DO...N=l,5 
Several lines of code that now involve arrays such as A(N,M,K,L). 

This will also have the added benefit of potentially supporting more aggressive forms 
of loop unrolling. 

(2) If one has a long complicated loop that employs all the values associated with a 
single data point, then it is more efficient to store those values in an array Q(N,J,K,L) than in an 
array Q(J,K,L,N) in which N is some small integer value such as 5 or 6. Similarly, if one has two 
or more arrays that are always used as a group, then those arrays should be merged. An example 
of this is merging the arrays XX(J,K,L), XY(J,K,L), and XZ(J,K,L) into a single array 
XXYZ(3,J,K,L). 

e. When vector-based architectures are used, it is sometimes necessary to process a plane of 
data at a time in order to avoid limitations caused by dependencies. This can result in the use of 
scratch arrays that are too big to fit in cache. However, if one accepts that the code no longer needs 
to be vectorizable, then one can process just a single row or column of data at a time. This will 
normally shrink the size of the scratch arrays by one or more orders of magnitude. At this point, 
the array has the advantage of being "locked" into cache. The one catch is that the cache still needs 
to be big enough. Many processors have relatively small primary caches ranging in size from 8 KB 
to 64 KB. In some cases, the scratch arrays might not fit into the primary cache, or at best would 
be a tight fit, which would result in an undesirable level of cache thrashing. However, if the 
processor has a large off-chip cache (e.g., at least 1 MB in size), then it is possible to "lock" the 
scratch arrays into cache with plenty of room to spare. Note that this observation can also be 
important when blocking code, since very small block sizes may be of little or no value. 

f. It was also found that a small number of the loops were expensive and computationally 
intensive but had a low cache miss rate. For these loops, highly aggressive techniques were used 
to improve the level of register reuse and to take better advantage, in other ways, of the pipelined 
nature of RISC processors. 
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g. Three final observations about this process were 

(1) Tuning is an iterative process. 

(2) For programs that are not written in an object-oriented fashion (e.g., Java or 
C++), relatively few subroutines or functions will need to be tuned. However, if the tuning 
process is successful, the number of routines requiring tuning will increase (e.g., by a factor of 2 
or 3, or from 5-10 to 20-30 routines) as the process finishes. 

(3) The 80-20 rule (20% of the work gets 80% of the benefit) does not apply. Many 
of these systems have very significant increases in performance as one passes the 90% to 95% 
tuned point. The reason for this has to do with the high cost of cache and TLB misses (100 or 
more cycles). The point here is that until one has reduced the cache miss rate (in terms of the 
misses that miss all the way back to main memory) to 1% or less, most other forms of tuning will 
not provide a significant gain in performance. However, if the overall cache miss rate is tuned to 
this extent, then other forms of tuning may be worth considering (at least for the two or three 
most expensive routines). 

The net result of these manipulations was to accelerate the code by a factor of 11 while 
leaving the algorithm and the convergence properties unchanged. It is also important to note that 
all of this was done before attempting to parallelize the code, so this acceleration was not achieved 
by using substantially more hardware. Additionally, since independent measurements on the Cray 
C-90 showed that the original vector-optimized code achieved 30% to 40% of peak, these 
improvements in performance were not the result of starting from a poorly written/optimized code. 

At this point, we have answered the first concern. It is actually possible for a large memory 
high performance computing job (we have run jobs as large as 73 GB) to benefit from a cache, 
providing that the cache is at least 1 MB in size (2- to 8-MB caches may be even better). The third 
concern had to do with trade-offs between fast memory access and the presence of cache. The ratio 
between memory latencies of the fastest versus the slowest systems in this market is roughly 2:3. 
Similarly, the ratio for memory bandwidths is roughly 2:4. Clearly, for well-tuned code, the large 
cache can be advantageous and is a better choice than to worry about minor improvements in 
memory latency and memory bandwidth. However, for untuned code, the reverse statement can be 
made. The problem is that even on the systems with the fastest DRAM-based memory systems, 
the performance of untuned/poorly tuned code is likely to leave a lot to be desired. 

3. PARALLELIZATION ISSUES 

When this project was started, it was "common knowledge" that implicit CFD codes (e.g., 
F3D) could not be efficiently parallelized without adversely affecting the convergence properties 
of the algorithm.[28] To one of the authors (Daniel Pressel), this seemed like a rather strange 
statement. It was known that F3D performed efficiently on a Cray C-90, a vector processor. 
Since vectorization is a form of parallelism, it should theoretically be possible to exploit the same 
parallelism with non-vector processors in order to demonstrate parallel performance. Upon 
further reflection, there were three straightforward reasons for the "common knowledge": 
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a. Commonly used approaches to parallelization assumed that one had a virtually infinite 
level of available parallelism. This assumption was necessary because of the limited performance 
of the individual processors being used. In contrast, Cray vector processors were reasonably 
efficient even when the levels of available parallelism were in the range of 50 to 100. 

b. Ordinary techniques for parallelizing CFD codes were based on the concept of domain 
decomposition. This had the benefit of generating a good level of locality of reference, which 
helped to reduce the amount of data motion between processors in a distributed memory 
environment (such as is normally used in highly scalable parallel processors). Unfortunately, 
when this approach to implicit CFD codes was applied in a naive manner, the convergence 
properties of the code were frequently adversely affected when as few as 32 processors were used. 

c. The obvious alternative was to use some form of loop-level parallelism. What made this 
obvious is that vectorization is a form of loop-level parallelism. Unfortunately, when attempting 
to implement loop-level parallelism in a distributed memory environment, one is likely to have a 
very poor locality of reference. Furthermore, the messages between the processors are likely to 
be small in size, but huge in number. This will make the program perform poorly on most of the 
massively parallel systems on the market. The two solutions are 

(1) Use a shared memory system, which would eliminate the performance problems 
associated with using a distributed memory system. 

(2) Use a distributed memory system that supports a particularly efficient version of 
Software Virtual Shared Memory. The Cray T3D was designed to be just such a system. 

One might question why the first of these approaches had not been tried before. The 
answer is quite simple. Before this project began, there were three types of shared memory 
systems on the market: 

a. Systems based on two to eight mini-computer/main frame processors that were poorly 
suited for the task (e.g., too weak and/or too expensive for the delivered level of performance). 

b. Vector-based systems using 2 to 16 processors. The biggest problem here was that the 
vector processors were already using much of the available parallelism, leaving little hope of 
showing significant levels of speedup. 

c. Shared memory systems based on micro-processors using as many as 30 processors. 
Unfortunately, the performance of these processors was limited, resulting in systems that were 
once again poorly suited for the task. 

Starting in the early 1990s, all this started to change. SGI announced the R8000 processor 
would have a peak speed of 300 Mflops. The Digital Equipment Corporation (DEC) produced 
the 21064 Alpha processor with a peak speed of 150 Mflops; IBM announced the POWER2 
processor with a peak speed of 267 Mflops; and HP produced a processor rated at 200 Mflops. 
SGI, DEC, and Convex (using HP's processor) all produced shared memory systems of various 
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sizes based on these powerful processors. Additionally, Cray Research produced the Cray T3D 
based on the Alpha processor, which was designed to support the CRAFT programming model (a 
form of Software Virtual Shared Memory). In theory, the SGI and Convex systems should have 
been equivalent in performance to a small Cray C-90, while Cray claimed that a large T3D was 
more powerful than a 16-processor Cray C-90 (at least for some problems). 

With the arrival of eight SGI Power Challenges (collectively referred to as the Power 
Challenge Array) at the U.S. Army Research Laboratory (ARL), and with the Army High 
Performance Computing Research Center gaining access to a large Cray T3D, the scene was set 
to see what these machines were capable of doing. Daniel Pressel was selected to optimize the 
F3D code for the Power Challenge, while Marek Behr was selected to do the same for the Cray 
T3D. As mentioned earlier, the only startling thing about the performance of this code on the 
Power Challenge was the poor level of the performance. Furthermore, these machines arrived 
with 12 processors each, were upgradable to a maximum of 18, and did not support the shared 
memory-programming paradigm when used as a cluster. Therefore, it would be impossible to 
overcome this performance deficit by using large numbers of processors. 

Marek Behr's problems with the Cray T3D were even more serious. Whereas the Power 
Challenge was able to run the code using a single processor from the first (albeit very slowly), 
that option did not even exist for the Cray T3D. Therefore, it was impossible for him to even 
consider the issues surrounding serial efficiency until after he had successfully parallelized the 
code. Furthermore, once he had succeeded in parallelizing the code using the CRAFT model, the 
performance shortcomings of this model became all too apparent. By this time, much of the 
serial tuning for the Power Challenge had been completed and the use of compiler directive 
based loop-level parallelism was starting to show significant levels of speedup and overall levels 
of performance. At this point, rather than stopping, Marek Behr decided to take the extreme step 
of manually implementing loop-level parallelism on the Cray T3D using message-passing code. 
By using the SHMEM (Cray's so-called "shared memory" primitives, also known as single-sided 
message-passing primitives), he was able to demonstrate a level of performance that several 
times exceeded the performance when the CRAFT model was used. While the per-processor 
level of performance was less than had been hoped for, it was now at least high enough that it 
would be possible to achieve acceptable levels of performance for all but the smallest problems 
by using larger numbers of processors. 

Daniel Pressel then tried to extend the shared memory version of the code to support the 
Convex Exemplar, which claimed to be a simple extension of the shared memory environment. 
Unfortunately, while this claim was largely correct, he was never able to achieve acceptable 
levels of performance when using more than eight processors (although the performance with 
eight processors was superior to that of a single processor of a Cray C-90). Following this, work 
began to test an older version of the SGI Challenge at ARL and a newly arrived RIOOOO-based 
SGI Challenge at the Tank-Automotive Command (TACOM) Distributed Center. Both of these 
efforts were fully successful and allowed us to develop additional code modification to support a 
wider range of system configurations. 
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Following this, the shared memory version of the code was rapidly transferred to the SGI 
Origin 2000 when it arrived at the newly created ARL Major Shared Resource Center (MSRC). 
At about the same time the Army High Performance Computing Research Center (AHPCRC), 
which was now referred to as a distributed center, gained access to a succession of Cray T3Es. 
The distributed memory version of the code was rapidly transferred to these systems. After this, 
significant additional improvements were demonstrated on the Origins as larger and faster 
systems were brought on line. Currently, the largest Origins in the Department of Defense (DoD) 
HPC modernization program have 128 processors, with plans under way to create some 256- 
processor systems. Unfortunately, it is not clear to what extent this code will be able to take 
advantage of the 256-processor system. Also, some of the systems have been upgraded from 
195-MHz (390 Mflops) processors to either 250-MHz (500 Mflops) or 300-MHz (600 Mflops) 
R12000 processor-based systems. 

At the same time, the AHPCRC and the MSRC at the U.S. Army Engineering Research and 
Development Center (ERDC) obtained Cray T3E 1200s with more than 200 processors each, 
while the MSRC at Naval Oceanographic Office (NAVO) has taken delivery of a Cray T3E 900 
with more than 900 processors in it. While for most problems this is more hardware than is 
reasonable to use for just one job, it has allowed Marek Behr to demonstrate highly desirable 
levels of performance on these machines. Subsequently, he ported this version of the code to the 
SGI Origin 2000 (although at a lower level of performance than that achieved with the shared 
memory version of the code). He also created a version of the code that uses only MPI calls for 
use on the IBM SP. Unfortunately, tests run with this code on the IBM SP at the ERDC MSRC 
have proved to be somewhat disappointing. Presumably, this is the result of the IBM SP having 
a larger latency when passing messages between processors, which severely impedes the 
performance of codes such as this one, which frequently passes huge numbers of small messages. 
A more detailed description of this effort is given in Section 2.3.2 in the main body of this report. 

4. PERFORMANCE METRICS FOR PARALLEL PROGRAMS 

Traditionally, talks concerning the performance of parallel programs have stressed the 
scalability of the program(s) being discussed. This project has taken a very different point of 
view. It has been based on the assumption that from the standpoint of performance, the two 
things that really matter are 

a. When you are talking about a single job, what matters is the time to completion. 

b. When you are talking about a series of jobs, what matters is the overall throughput. This 
is a function of how efficiently the hardware is being used, the performance of a single job on the 
hardware (note in this case, one can frequently achieve better levels of throughput by using fewer 
processors per job but running more jobs at once with a higher level of parallel efficiency), and 
the amount of hardware that is available upon which to run the jobs. 

This does not mean that we do not consider parallel speedup and parallel efficiency to be 
important. Rather, we consider it to be only part of the whole story. The remaining parts of the 
story are 
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a. The raw performance of the processors; 

b. The number of processors that are readily available (this is a function of usage by other 
users, system configurations, the amount of hardware that was purchased, and probably other 
factors as well); 

c. Serial efficiency. If the job is not efficiently using its processors, then scaling to larger 
numbers of processors will be of questionable value. Our experience (as well as that of others) 
with the CRAFT model on the Cray T3D is an excellent example of this point. 

d. The efficiency of the algorithm being used. Many of the early success stories of parallel 
computing involved algorithms that were really inefficient but were also extremely easy to 
parallelize (e.g., Monte Carlo methods). As a result, one could get very high levels of floating 
point performance and still have a slowly running job. 

e. Any hidden inefficiencies associated with the parallelization of the algorithm. A simple 
example of this is to perform the same calculation on every processor to avoid the need for 
communication. This can improve the run time of the job, but it can also inflate the operation 
count. The program should get credit for the faster run time, but one needs to discount the added 
operations before calculating things like Mflops or serial efficiency. In other cases, the 
parallelization technique might make the operation count a function of the number of processors 
being used (e.g., 0[log{n}]). This can still result in parallelization being a success; however, it 
will be a much smaller success (assuming that this occurs in a key portion of the program). 

Our reasons for being concerned with these issues are simply stated; we made every effort 
to achieve very high levels of performance based on wall clock time, knowing full well that there 
would be significant limits on the scalability of these codes. As a result, the performance of the 
shared memory code running on the Origin 2000 exceeds that of the distributed memory version 
of the code running on a Cray T3E-1200 (when using the same numbers of processors), even 
though the Cray T3E-1200 is rated (and sold) on a per-processor basis as being three times as fast 
as the Origin 2000. Furthermore, when looking at other benchmarks run on various versions of 
the Cray T3E (all of which were supposed to have faster processors than the Origin 2000), we 
find that the per processor Mflops delivered by our code is superior to what other researchers are 
seeing for their codes on the Cray T3E. Finally, researchers at the National Center for 
Atmospheric Research (NCAR) have reported that one of their climate models runs noticeably 
faster on an Origin than it does on the Cray T3E (like our code, this model is not highly scalable, 
so this is an important result). 

5. LIMITATIONS ON THE PARALLEL PERFORMANCE OF THE CODE 

Several limitations are inherent with the use of loop-level parallelism, which will limit the 
achievable levels of parallel speedup when larger numbers of processors are used. Taking a 
quick look at these limitations, 

a. Since we are writing the individual loops to execute in parallel, the available parallelism 
is limited by the number of iterations in the loop. In some cases, it is possible to merge two or 
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more loops in a loop nest to effectively eliminate this limitation (something that was done with 
the distributed memory version of the code but not the shared memory version of the code). 
However, if there is a loop dependency in all but one direction, it will not be possible to make 
this transformation. Furthermore, if some of the loops are prohibited from making the 
transformation, then making the transformation on the remaining loops may be of less value. 

b. An overhead cost is associated with getting in and out of parallel sections of code. At 
the same time, loop-level parallelism will almost always have significantly less work per 
synchronization/communication event than is observed in message passing code based on 
domain decomposition. As a result, on a shared memory system it may be desirable to leave 
some of the loops unparallelized (this may not be an option in a distributed memory environment). 
This is especially likely to be the case in some of the boundary condition routines. Unfortunately, 
when 100 or more processors are used, this serial code is likely to dominate the run time 
(Amdahl's Law). 

c. There can also be performance issues when one is writing code loops with moderate 
amounts of work when the number of processors approaches the available level of parallelism. 
In general, the overhead cost need not dominate the performance of these loops; however, it may 
have an impact that cannot be entirely ignored. This effect is comparable to the way the ratio 
between computation and communication becomes unfavorable for traditional codes as the 
number of processors increases (for fixed size problems). 

d. A direct result of parallelizing some or all of the loops in only one direction is that the 
available parallelism is roughly equal to the cube root of the number of grid points in the zone 
being processed (square root for 2-D problems). This violates one of the key assumptions of 
scaled speedup, that the available parallelism is proportional to the problem size. As a result, any 
metrics based on the concept of scaled speedup are of limited applicability. 

e. Another direct consequence of limited amounts of parallelism is that a plot of 
performance (or if one prefers, speedup) as a function of the number of processors being used 
will have a staircase appearance for large numbers of processors. For example, if a loop has 100 
units of parallelism, then jobs using 25 to 33 processors will all run at the same speed. Jobs 
using 34 to 49 should run 33% faster than that. Jobs using 50 to 99 will run twice as fast as the 
25-processor job. Finally, when 100 processors are used, the peak speed of 4 times as fast as the 
25-processor job will be obtained. It is important to understand that this effect does not depend 
on hardware limitations, nor is it an example of Amdahl's Law. It is an inherent result of integer 
division. Of course, the extent to which this effect is actually observed is likely to be 
complicated by other factors that are discussed in Section 6 of this appendix, so the predicted 
performance increases are really for the ideal case. 

6. ADDITIONAL CONSIDERATIONS 

The previous list of limitations is entirely theoretical in nature. In addition to them, there 
are the following practical considerations: 
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a. Many jobs will perform I/O at the beginning and/or the end of every run. In general, this 
I/O will not be parallelized (some systems still do not support parallel I/O, while on many 
systems, it can be counter productive). 

b. It takes time to allocate memory (especially for large memory jobs using gigabytes of 
memory). Furthermore, on some systems, the run time for a job will include the time required 
for the system to de-allocate the memory after the job has completed. 

c. It is common practice when performing timed runs for benchmarking purposes to keep 
the runs short (as opposed to running them to convergence). 

If one normally executes large numbers of time steps in a single run (e.g., going to 
convergence in just one run), then it might be totally reasonable to include the initialization and 
termination costs when performing benchmark runs. This can also be the case when one is trying 
to benchmark the performance of one or more jobs on a system for procurement purposes. 
However, for the purpose of benchmarking CHSSI software, we feel that it is best if these effects 
have been subtracted from the run time. While there are many ways in which this can be done, 
the simplest one, and the one that has been used for this report is to do two sets of runs. One 
involving larger numbers of time steps (e.g., 50 to 100) and one involving smaller numbers of 
time steps (e.g., 1 to 10). On a suitably quiet system, subtracting one set of runs from the other 
should give a good estimate of the asymptotic behavior of the code per time step. On a system 
shared with other users, the results are likely to have some noise, although the amount of noise 
need not be large if the system is not overloaded (on overloaded systems, a number of effects 
come into play that will make it all but impossible to get useful numbers). 

7. THE QUESTION OF METRICS 

As with any good research and development project, one needs metrics for judging the 
success of a project. One approach would be to compare the wall clock time of this code to that 
of other codes doing the same problem. This would have the strong advantage of helping to test 
the claims that we had an efficient serial implementation and an efficient algorithm, and therefore 
might not need the same level of parallelism to be of significant value. For whatever reason, this 
has not been done. 

A second possibility, and one that was heavily used at the start of this project, is to compare 
the performance (again in terms of wall clock time) for the various combinations of system/ 
versions of the code against each other and against the performance of the original vector- 
optimized code on both the C-90 (where it was exceptional) and on the SGI Power Challenge 
(where it performed poorly). Again, if one assumes that the performance of a single processor of 
a C-90 provided acceptable levels of performance for a particular problem, then this approach 
can allow one to estimate which problems can be tackled on each system and how much 
hardware will be required. This approach also has the advantage of allowing one to look at real- 
world considerations such as the availability of sufficient memory to run the job on the different 
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platforms, and the time spent in the queue. While this approach has significant merit, its 
importance has been substantially diminished. 

A third possibility is to measure scaled speedup (this is also known as soft scalability). This 
method was developed by Sandia National Laboratories, Albuquerque, New Mexico, and has been 
used on many projects. However, there are some serious problems with this approach. The first 
is, as noted in the Section 5 of this appendix, that the approach makes assumptions that do not 
apply to this code; therefore, it is not a particularly appropriate metric to use in this case. The 
second problem is that the approach assumes that the current problem size is running efficiently 
and fast enough when N processors are used. If this is the case, then when a problem twice the 
size is confronted and 2N processors are used, one would still be happy with the performance. 
However, the approach fails to address the situation when the speed or efficiency for the current 
problem size is considered to be unacceptable. The third problem is that the approach assumes 
that one really wants to be running a bigger problem. If that is not the case, then scaled speedup 
is of little or no value even in cases when the other two objections do not apply. 

The fourth and final possibility that we will consider is the case of fixed size speedup. The 
proponents of scaled acceleration will point out that for large enough numbers of processors this 
will always result in problems with both Amdahl's Law and with a poor ratio between 
communication and computation. They are absolutely right. However, if one has a problem with 
a limited level of parallelism, these objections may or may not be important. Continuing, it is 
natural to want the performance to double when the number of processors being used is doubled. 
In fact, when confronting problems involving large amounts of parallelism, this is the ideal 
behavior. It is also the behavior that will help one achieve the best use of the hardware (all 
things being equal). However, in the case of codes with a high level of algorithmic efficiency 
and serial efficiency, it may be reasonable to relax this requirement slightly. In particular, in 
Section 5 of this appendix, it was shown that the ideal behavior for codes with limited levels of 
parallelism is a stair-stepping behavior. Therefore, we suggest that if the stair-stepping behavior 
can be adequately predicted, that behavior should be used as the basis for this metric. In cases 
when this cannot be done, one might want to slightly adjust the acceptable level of parallel 
efficiency (e.g., decreasing it by 5% to 10% for 30 to 50 processors, and 10% to 20% for 50 to 
100 processors). This still leaves the project responsible for the way the code interacts with the 
hardware, the effects of Amdahl's Law, and several other effects that will frequently result in less 
than ideal behavior. The one remaining sticking point is to determine things such as what 
problem sizes will be run and how many processors need to be used for each of the problems or 
problem sizes. 
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APPENDIX C 

ZNSFLOW CHSSI PROJECT MILESTONES 
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ZNSFLOW CHSSI Project Milestones 

The ZNSFLOW CHSSI project took place over several years. It is difficult to plan 
software development over a span of years. Some of the particular difficulties of software 
development are keeping pace with developing hardware and upgraded compilers, operating 
systems, and scalable computer models. These and other factors forced many modifications of 
the original ZNSFLOW development plan. Milestone charts provide documentation to measure 
the development of the ZNSFLOW software and progress of the overall CHSSI project and 
provide some insight for visualizing the development path of the final product. Following are 
milestone charts that provide a time table for the development of the ZNSFLOW CHSSI project. 
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Milestone Item / Description Start               Complete 

Plan Actual Plan Actual 
1 Software Development: 

1.1 Implicit ZNS: Apr-96 Apr-96 Mar-99 Jul-99 
1.1.1 Scalable Algorithm (SA) Apr-96 Apr-96 Dec-97 Dec-97 

1.1.1.1 SA:PCA-singlenode Apr-96 Apr-96 Feb-97 Feb-97 
1.1.1.2 SA:Origin2000 single node Apr-97 Apr-97 Dec-97 Dec-97 
1.1.1.3 SA:Origin2000 multiple node Sep-97 Jan-98 Dec-97 Dec-97 
1.1.1.4 SA:T3D Apr-96 Apr-96 Jun-97 Jun-97 

1.1.1.5 SA:T3E Apr-97 Apr-97 Dec-98 Dec-98 
1.1.2 Restructure Code (RC) Aug-96 Aug-96 Jun-98 Jun-98 
1.1.3 Pointwise Turbulence Model Jun-97 Apr-98 Oct-98 Mar-99 
1.1.4 Merge with DICE Jan-97 Jan-97 May-98 May-98 
1.1.5 Chimera (C) Sep-96 Sep-96 Dec-97 Dec-97 

1.1.5.1 C: Origin 2000 Sep-96 Sep-96 Sep-97 Sep-97 
1.1.5.2 C:T3E Nov-97 

1.1.9 Alpha Release Jun-97 Jun-97 Sep-98 Sep-98 
1.1.10 Beta Release Jun-98 Jun-98 Sep-99 Sep-99 

Figure C-2. ZNSFLOW Milestone Schedule Continued. 

I Milestone / Item Description Start               Complete 
I Plan Actual Plan Actual 

1.2 DICE Environment Jan-97 Jan-97 May-98 Jul-98 
1.2.1 common grid file structure Mar-97 Mar-97 Sep-97 Sep-97 
1.2.2 common q file structure Jun-97 Jun-97 Dec-97 Dec-97 
1.2.3 GUI for Implicit ZNS input Jun-97 Jun-97 May-98 Jul-98 

1.2.4 Visualization Sep-96 Sep-96 May-98 Jun-98 

1.2.4.1 Planes Jan-97 Jan-97 Apr-97 May-97 
1.2.4.2 Isosurf aces Jan-97 Jan-97 Jun-97 Jun-97 

1.2.4.3 Ensight Interface Jan-97 Jan-97 May-98 Dec-97 

1.2.6 Grid Generators Sep-97 Sep-97 Oct-98 Dec-98 
1.2.6.1 Genie May-98 May-98 Oct-98 Dec-98 

Figure C-3. ZNSFLOW Milestone Schedule Continued. 
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Milestone/ Item Description Start                Complete 
Plan Actual Plan Actual 

2 Test and Evaluation 
2.1 Suite of graded test problems Apr-96 Apr-96 Dec-97 Dec-97 

2.1.1 Uniform flow Jan-97 Feb-97 Mar-97 Mar-97 
2.1.2 Flat plate boundary layer Feb-97 Feb-97 Apr-97 Mar-98 

2.1.3 KTA missile Apr-96 Apr-96 Sep-97 Sep-97 

2.1.4 Spherical Nose Cap Jun-96 Jun-97 Sep-97 Sep-97 

2.1.5 SOCBT Feb-97 Apr-97 Jul-97 Jul-97 
2.2 Validation plan Apr-96 Apr-96 Sep-97 Apr-98 

Figure C-4. ZNSFLOW Milestone Schedule Continued. 

Milestone / Item Description Start               Complete 
Plan Actual Plan Actual 

3 Demonstration Problems 
3.1 Guided MLRS Missile Apr-98 Sep-98 Mar-99 Mar-99 

3.1.1 Problem definition Apr-98 Sep-98 Sep-98 Sep-98 
3.1.2 Grid definition Apr-98 Sep-98 Sep-98 Sep-98 
3.1.3 Calculation on Origin 2000 Dec-98 Dec-98 Jan-99 Mar-99 

3.2 BAT projectile Apr-96 Apr-96 Nov-98 Sep-98 

3.2.1 Problem definition Apr-96 Apr-96 May-96 May-96 
3.2.2 Grid definition Dec-96 Dec-96 Jan-97 Jan-98 
3.2.3 Calculation on Origin 2000 Jun-97 Jan-98 Apr-98 Sep-98 

Figure C-5. ZNSFLOW Milestone Schedule Continued. 
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Milestone / Item Description Start Complete 
| Plan Actual Plan Actual 

4 4. User group meetings: 
4.1 4QFY96 Aug-96 Aug-97 
4.2 3QFY97 Aug-97 Oct-97 
4.3 3QFY98 Aug-98 Oct-98 
4.4 3QFY99 Mar-99 Aug-99 

5 Documentation: 
5.1 ARL CHSSI home page Sep-97 Jan-98 Mar-99 Mar-99 
5.2 ZNS user/technical manuals Jun-96 Jun-97 Mar-99 Mar-99 
5.3 Establish training classes Aug-98 Oct-98 Mar-99 Aug-99 

6 Reports: 
6.1 FY96 end year Nov-96 Nov-96 
6.2 FY97 mid year Jun-97 Jul-97 
6.3 FY97 end year Nov-97 Dec-97 
6.4 FY98 mid year Jun-98 Jun-98 
6.5 FY98 end year Nov-98 Jan-99 
6.7 FY99 Final Report Mar-99 Sep-99 

Figure C-6. ZNSFLOW Milestone Schedule Continued. 

59 



INTENTIONALLY LEFT BLANK 

60 



NO. OF 
COPIES ORGANIZATION 

ADMINISTRATOR 
DEFENSE TECHNICAL INFO CENTER 
ATTN DTIC OCP 
8725 JOHN J KINGMAN RD STE 0944 
FTBELVOIR VA 22060-6218 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN AMSRL CS AL TA REC MGMT 
2800 POWDER MILL RD 
ADELPHIMD 20783-1197 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN AMSRL CI LL  TECH LIB 
2800 POWDER MILL RD 
ADELPHIMD 207830-1197 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN AMSRL DD 
2800 POWDER MILL RD 
ADELPHIMD 20783-1197 

CDR US ARMY ARDEC 
ATTN AMSTEAETA   R DEKLEINE 

CNG   R BOTTICELLI 
HHUDGINS   JGRAU 
S KAHN    W KOENIG 

PICATINNY ARSENAL NJ 07806-5001 

CDR US ARMY ARDEC 
ATTN AMSTE CCH V PAUL VALENTI 
PICATINNY ARSENAL NJ 07806-5001 

CDR US ARMY ARDEC 
ATTN SFAE FAS SD MIKE DEVINE 
PICATINNY ARSENAL NJ 07806-5001 

USAF WRIGHT AERONAUTICAL LABS 
ATTN AFWAL FIMG DR J SHANG 

MR N E SCAGGS 
WPAFB OH 45433-6553 

AIR FORCE ARMAMENT LAB 
ATTN AFATL/FXA STEPHEN C KORN 

BRUCE SIMPSON   DAVEBELK 
EGLIN AIR FORCE BASE FL 32542-5434 

NO. OF 
COPIES 

1 

ORGANIZATION 

CDRNSWC 
CODE B40 DR W YANTA 
DAHLGREN VA   22448-5100 

CDR NSWC 
CODE 420 DRAWARDLAW 
INDIAN HEAD MD  20640-5035 

CDR NSWC 
ATTN DRF MOORE 
DAHLGREN VA  22448 

NAVAL AIR WARFARE CENTER 
ATTN DAVID FINDLAY 
MS3BLDG2187 
PATUXENT RIVER MD  20670 

DIR NASA 
LANGLEY RESEARCH CENTER 
ATTN TECH LIBRARY 

MR D M BUSHNELL 
DR M J HEMSCH 
DR J SOUTH 

LANGLEY STATION 
HAMPTON VA  23665 

ARPA 
ATTN DR P KEMMEY 

DR JAMES RICHARDSON 
3701 NORTH FAIRFAX DR 
ARLINGTON VA  22203-1714 

DIR NASA 
AMES RESEARCH CENTER 
T27B-1 L SCHIFF 
T27B-1 T HOLST 
MS 237-2 D CHAUSSEE 
MS 269-1 MRAI 
MS 200-6 P KUTLER 
MS 258 1 B MEAKTN 
MOFFETT FIELD CA   94035 

USMA 
DEPT OF MECHANICS 
ATTN LTC ANDREW L DULL 

M COSTELLO 
WEST POINT NY   10996 

61 



NO. OF 
COPIES ORGANIZATION 

UNIV OF CALIFORNIA DAVIS 
DEPT OF MECHANICAL ENGRG 
ATTN PROF H A DWYER 

PROF M HAFEZ 
DAVIS CA   95616 

AEROJET ELECTRONICS PLANT 
ATTN DANIEL W PILLASCH 
B170 DEPT 5311 
PO BOX 296 
1100 WEST HOLLYVALE STREET 
AZUSA CA  91702 

MIT 
TECH LIBRARY 
77 MASSACHUSETTS AVE 
CAMBRIDGE MA  02139 

GRUMANN AEROSPACE CORP 
AEROPHYSICS RESEARCH DEPT 
ATTN DR R E MELNIK 
BETHPAGE NY   11714 

MICRO CRAFT INC 
ATTN DRJOHNBENEK 

NORMAN SUHS 
207 BIG SPRINGS AVE 
TULLAHOMA TN   37388-0370 

LANL 
ATTN MRBILLHOGAN 
MS G770 
LOS ALAMOS NM   87545 

METACOMP TECHNOLOGIES INC 
ATTN S R CHAKRAVARTHY 
650 HAMPSHIRE ROAD 
SUITE 200 
WESTLAKE VILLAGE CA 91361-2510 

ROCKWELL SCIENCE CENTER 
ATTN S V RAMAKRISHNAN 

V V SHANKAR 
1049 CAMINO DOS RIOS 
THOUSAND OAKS CA  91360 

ADVANCED TECHNOLOGY CTR 
ARVIN/CALSPAN 
AERODYNAMICS RESEARCH DEPT 
ATTN DR M S HOLDEN 
PO BOX 400 
BUFFALO NY   14225 

NO. OF 
COPIES 

1 

ORGANIZATION 

UNIV OF ILLINOIS AT URBANA CHAMPAIGN 
DEPT OF MECH & IND ENGINEERING 
ATTN DRJCDUTTON 
URBANA IL 61801 

UNIVERSITY OF MARYLAND 
DEPT OF AEROSPACE ENGRG 
ATTN DRJD ANDERSON JR 
COLLEGE PARK MD  20742 

UNIVERSITY OF NOTRE DAME 
DEPT OF AERONAUTICAL & MECH ENGRG 
ATTN PROF T J MUELLER 
NOTRE DAME IN  46556 

UNIVERSITY OF TEXAS 
DEPT OF AEROSPACE ENGRG MECH 
ATTN DRDS DOLLING 
AUSTIN TX  78712-1055 

UNIVERSITY OF DELAWARE 
DEPT OF MECHANICAL ENGRG 
ATTN DR JOHN MEAKIN 
NEWARK DE   19716 

COMMANDER USAAMCOM 
ATTN AMSAM RD SS AT 

ERIC KREEGER 
GEORGE LANDINGHAM 
CLARK D MIKKELSON 
ED VAUGHN 

REDSTONE ARSENAL AL 35898-5252 

LOCKHEED MARTIN VOUGHT SYS 
PO BOX 65003 M/S EM 55 
ATTN PERRY WOODEN 

W B BROOKS 
JENNIE FOX 
ED MCQUILLEN 

DALLAS TX 75265-0003 

COMMANDER 
US ARMY TACOM-ARDEC BLDG 162S 
ATTN AMCPM DS MO 

PETER J BURKE 
PICATINNY ARSENAL NJ 07806-5000 

DIR NASA 
LANGLEY RESEARCH CENTER 
MS 499 P BUNING 
HAMPTON VA 23681 

62 



NO. OF 
COPIES ORGANIZATION 

ABERDEEN PROVING GROUND 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN AMSRLCI LP (TECH LIB) 
BLDG305 APGAA 

CDR US ARMY ARDEC 
BRING TABLES BRANCH 
ATTN R LIESKE   R EITMILLER 

F MIRABELLE 
BLDG 120 

NO. OF 
COPIES ORGANIZATION 

20 DIR USARL 
ATTN AMSRLWMBC  PPLOSTINS 

MBUNDY   G COOPER 
H EDGE (5 CYS) J GARNER 
B GUIDOS    K HEAVEY 
D LYON      A MIKHAIL 
V OSKAY    J SAHU 
K SOENCKSEN 
D WEBB    P WEINACHT 
SWILKERSON AZIELINSKI 

BLDG 390 

DIR USARL 
ATTN AMSRLCI 
BLDG 394 

N RADHAKRISHNAN 

DIR USARL 
ATTN AMSRL CI H   D HISLEY 

D PRESSEL C ZOLTANI 
C NIETUBICZ 

BLDG 394 

DIR USARL 
ATTN AMSRL CI H 
BLDG 328 

WSTUREK 

DIR USARL 
ATTN AMSRL WM  I MAY 

L JOHNSON 
BLDG 4600 

DIR USARL 
ATTN AMSRL WM B A W HORST JR 

W CIEPIELLA 
BLDG 4600 

DIR USARL 
ATTN AMSRL WM BD B FORCH 
BLDG 4600 

DIR USARL 
AMSRL WM BE   MNUSCA 

J DESPIRITO 
BLDG 390 

DIR USARL 
ATTN AMSRL WM BF J LACETERA 
BLDG 120 

DIR USARL 
ATTN AMSRL WM TB R LOTTERO 
BLDG 309 

ABSTRACT ONLY 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN AMSRL CS AL TP TECH PUB BR 
2800 POWDER MILL RD 
ADELPHIMD 20783-1197 

DIR USARL 
ATTN AMSRL WM B E M SCHMIDT 
BLDG 390A 

DIRARL 
ATTN AMSRL WM BA   W D'AMICO 

FBRANDON   TBROWN 
L BURKE        J CONDON 
B DAVIS M HOLLIS 

BLDG 4600 

63 



INTENTIONALLY LEFT BLANK 

64 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
qatherinq and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

February 2000 

3. REPORT TYPE AND DATES COVERED 

Final 

4. TITLE AND SUBTITLE 
Common High Performance Computing Software Support Initiative (CHSSI) Computational Fluid 
Dynamics (CFD)-6 Project Final Report: ARL Block-Structured Gridding Zonal Navier-Stokes Flow 
(ZNSFLOW) Solver Software  

6. AUTHOR(S) 

Edge, H.L.; Sahu, J.; Heavey, K.R.; Weinacht, P.; Sturek, W.B.; Pressel, D.M.; Zoltani, C.K.; Nietubicz, 
C.J. (all of ARL); Clarke, J. (Raytheon Systems); Behr, M. (Rice University); Collins, P. (Department of 
the Treasury)  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
Weapons & Materials Research Directorate 
Aberdeen Proving Ground, MD 21010-5066 

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
Weapons & Materials Research Directorate 
Aberdeen Proving Ground, MD 21010-5066  

5. FUNDING NUMBERS 

PR: 1L162628AH80 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

ARL-TR-2084 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This report presents an overview of the software developed under the common high performance computing software support 
initiative (CHSSI), computational fluid dynamics (CFD)-6 project. Under the project, a zonal Navier-Stokes flow solver tested 
and validated via years of productive research at the U.S. Army Research Laboratory was rewritten for scalable parallel 
performance on both shared memory and distributed memory high performance computers. At the same time, a graphical user 
interface (GUI) was developed to help the user set up the problem, provide real-time visualization, and execute the solver. The 
GUI is not just an input interface but provides an environment for the systematic, coherent execution of the solver, thus making 
it a more useful, quicker and easier application tool for engineers. Also part of the CHSSI project is a demonstration of the 
developed software on complex applications of interest to the Department of Defense (DoD). Results from computations of 10 
brilliant antitank (BAT) submunitions simultaneously ejecting from a single Army tactical missile and a guided multiple launch 
rocket system missile are discussed. Experimental data were available for comparison with the BAT computations. The CFD 
computations and the experimental data show good agreement and serve as validation for the accuracy of the solver. The 
software has been written with large memory requirements and scalability in mind. For a grid size of 59 million points, the 
performance achieved on an Silicon Graphics, Incorporated, Origin 2000 with 96 processors is 18 times the performance that 
could be achieved via a computer with the processing speed of a single Cray C-90 processor. 

14. SUBJECT TERMS 

CHSSI 
computational fluid dynamics 

high performance computing 
missiles 

Navier-Stokes 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

80 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

NSN 7540-01-280-5500 65 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 


